• بررسی مقایسه ای کاربرد شبکه عصبی مصنوعی و رگرسیون خطی در مدل تحلیل منطقه ای سیلاب

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1393/11/01
    • تاریخ انتشار در تی پی بین: 1393/11/01
    • تعداد بازدید: 910
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
    برآورد دبی اوج سیلاب برای حوضه های فاقد ایستگاه در طراحی سازه های آبی از اهمیت زیادی برخوردار است. یکی از مهمترین روش های برآورد دبی اوج سیلاب در مناطق فاقد آمار روش تحلیل منطقه ای (مدل بندی) سیلاب می باشد. مدل بندی سیلاب بر اساس رابطه علت و معلولی و برقراری رابطه ریاضی بین سیلاب و عوامل تولید آن، مورد تایید بسیاری از پژوهشگران قرار گرفته است. در این تحقیق از قابلیت شبکه های مفهومی (شبکه های عصبی مصنوعی) در شبیه سازی مشخصات فیزیوگرافیک و هیدرولوژیک حوضه آبریز جهت مدلسازی و پیش بینی دبی سیلاب حوضه استفاده شده است. نتایج حاصل از این مدل با نتایج روش رگرسیون که یکی از رایج ترین روش های مدل بندی منطقه ای سیلاب می باشد، مقایسه شدند. مطالعه موردی بر روی حوضه آبریز قزل اوزن سفیدرود، یکی از مهمترین حوضه های آبریز کشور و دارای رودخانه های پر آب و مهم، انجام گرفت. معماری مختلف شبکه های عصبی مصنوعی برای آموزش و تست شبکه مورد استفاده قرار گرفت و نتایج شبکه های ساخته شده با این توابع با هم مقایسه و بهترین شبکه پیش بینی سیلاب برای دبی با دوره بازگشت مختلف ارائه می شود. نتایج نشان دهنده دقت شبکه عصبی پرسپترون چند لایه با الگوریتم یادگیری پس انتشار خطا می باشد. در انتها برای تعیین درجه اهمیت پارامترهای ورودی شبکه از آنالیز حساسیت استفاده شد و تاثیر ورودی های کم اثر شامل زمان تمرکز و طول آبراهه در خروجی شبکه مشخص شد. مقایسه نتایج حاصل نشان دهنده دقت بیشتر مدل سیستم شبکه عصبی در مقایسه باروش رگرسیون دارد.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها