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a b s t r a c t

A one layer model of laminar non-Newtonian fluids (Ostwald–de Waele model) past a semi-infinite flat

plate is revisited. The stretching and the suction/injection velocities are assumed to be proportional to

x1=ð1�2nÞ and x�1, respectively, where n is the power-law index which is taken in the interval ð0, 1
2Þ. It is

shown that the boundary-layer equations display both similarity and pseudosimilarity reductions

according to a parameter g, which can be identified as suction/injection velocity. Interestingly, it is

found that there is a unique similarity solution, which is given in a closed form, if and only if g¼ 0

(impermeable surface). For ga0 (permeable surface) we obtain a unique pseudosimilarity solution for

any 0agZ�ððnþ1Þ=3nð1�2nÞÞn=ðnþ1Þ. Moreover, we explicitly show that any pseudosimilarity solution

exhibits similarity behavior and it is, in fact, similarity solution to a modified boundary-layer problem

for an impermeable surface. In addition, the exact similarity solution of the original boundary-layer

problem is used, via suitable transverse translations, to construct new explicit solutions describing

boundary-layer flows induced by permeable surfaces.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Many problems in boundary-layer theory lead to particular
exact solutions which are characterized by similarity velocity
profiles and agree with experimental observations and numerical
simulations. It is the purpose of this work to investigate possible
conditions for similarity and pseudosimilarity solutions to a class
of the boundary-layer flows of laminar non-Newtonian fluids. The
range of non-Newtonian fluid behavior exhibited by industrial
liquids is very large and the mathematical formulation is, in
general, complex. A broad description of the behavior in both
steady and unsteady flow situations, together with mathematical
models, can be found for example, to mention a few, in Astin et al.
[1], Astarita et al. [2], Barnes [3], Bird [4], Tanner [5], Schowalter
[6], Rajagopal et al. [7] and Rajagopal [8,9]. The most frequently
used model in non-Newtonian fluid mechanics is the Ostwald–de
Waele model, or the non-Newtonian power-law fluid, for which
the shear stress t is related to the strain rate uy via the expression
[10–21]:

t¼ njuyj
n�1uy, ð1Þ

where the subscript y denotes the partial derivative with respect
to y,n is a positive constant and n40 is the power-law index. The
case no1 is referred to as pseudoplastic or shear-thinning fluids,
and the case n41 is known as dilatant or shear-thickening fluids.

The Newtonian fluid is a special case where the power-law index
n is one.

To begin with, we give a brief description of the problem.
Consider a steady boundary-layer flow due to a moving plane
surface in a quiescent fluid. The fluid can be injected or sucked.
For the first approximation, the model is described by the Prandtl
or the boundary-layer equations for non-Newtonian power-law
fluids [10–21]:

uxþvy ¼ 0,

uuxþvuy ¼ nðjuyj
n�1uyÞy,

(
ð2Þ

with the boundary conditions:

uðx,0Þ ¼ uwðxÞ, vðx,0Þ ¼ vwðxÞ,

uðx,1Þ¼ lim
y-1

uðx,yÞ ¼ 0:

(
ð3Þ

The Cartesian coordinates (x,y) are such that the xZ0 coordinate
is along the plate and the yZ0 coordinate is normal to it with
y¼0 is the plate. Subscripts x and y denote partial derivatives
with respect to those variables and u and v are the velocity
components along the x- and y-axes, respectively. The stretching
and suction/injection velocities are assumed to be of the form:

uwðxÞ ¼U0
x

l

� �m

, vwðxÞ ¼ V0
x

l

� �p

, p¼
mð2n�1Þ�n

nþ1
, ð4Þ

where na 1
2 and m¼ ð1=ð1�2nÞÞðp¼�1Þ. U0 and V0 are constants

and the number l (the characteristic length) is the distance x

where the stretching velocity equals U0. It is assumed that the
positive x-direction is that of the main stream, so that U040. The
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