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We give two fundamental solutions for the motion of a point vortex near a flexible wall, up to first order

in wall deflection, using computational methods. For a point vortex near an infinite horizontal wall, the

deformation of the wall intensifies the flow at the wall near the vortex, and increases the speed of

the vortex. Near a circular wall there is a strong mutual amplification of the deflection of the wall and

the pressure force induced by the deflection, as the point vortex approaches the wall. The total force on

the wall diverges as the inverse cube of the distance to the point vortex, and the induced speed of the

point vortex diverges as the inverse fourth power of distance to the wall.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction of vortices with solid walls is a classical
problem in hydrodynamics [1], with recent applications in pro-
blems of biological and technological interest. Doligalksi et al. [2]
review studies of flows past aircraft and submarines, where
vorticity shed from upstream structures (i.e. airframes and
helicopter blades) collides with downstream surfaces, causing
boundary layer separation and leading to dramatic changes in
unsteady forces. Rockwell’s review [3] gives many additional
examples including vortices impinging on small bodies, leading
edges, and oscillating bodies, in the presence of three-dimen-
sional effects and non-uniform background flows. Many impor-
tant vortex–body interactions occur in biological flows, both
internal (heart flows [4]) and external (insect flight [5–7] and
fish swimming and schooling [8,9]). Many of these biological
structures undergo large deformations under forces induced by
vortices. The goal of the present work is to obtain two of the most
basic solutions for vortices interacting with deformable walls.
These solutions can be regarded as a starting point for a wider
class of interactions of vortices with flexible walls which incor-
porate boundary layer interactions, different vorticity distribu-
tions such as dipoles, and more complex geometries. Interactions
of vorticity with passive flexible flag-like structures have also
been studied experimentally [10], theoretically, and computa-
tionally [11–14].

We consider a two-dimensional flow consisting of a single
point vortex translating along a flexible wall which is either an
infinite line or a circle in the undeformed state. We solve the
problem in an asymptotic limit of small deformations. For large
deformations, boundary layer separation is likely, which would

inject additional vorticity into the outer flow. The leading order
wall deformation can be determined from the unperturbed flow,
which can be solved using classical methods such as the method
of images [1]. To understand how the wall deformation alters the
motion of the vortex and the force on the wall, we use a more
general formulation in terms of bound vortex sheets. We find that
the wall deformation increases the speed of the vortex as it
travels along the wall, and increases the force on the wall near the
vortex. The total force on the wall is either unchanged (for the
infinite wall) or increased (for the circular boundary) by the wall’s
deformation. As the distance between the point vortex and the
circular wall is decreased, the first-order correction to the flow
grows rapidly, due to a mutual amplification of the body’s
deformation and the fluid forces on the wall.

2. Point vortex near a flexible wall

We first give the equations for the motion of a single point
vortex immersed in an inviscid fluid above an infinite flexible
wall. The position z of the wall in the complex plane is given by its
vertical deflection h from the horizontal axis, zðx,tÞ ¼ xþ ihðx,tÞ
(see Fig. 1a). In what follows, we assume h(x,t) is small compared
to the length scale of the problem, which is the distance of the
point vortex from the wall, d. Then we retain terms up to linear
order in h and @xh and drop terms which are Oðh2,@xh2Þ. Some of
the details of this expansion are given in [15,16]. The method
given here can also be used for more general zðx,tÞ.

The boundary condition that the flow does not penetrate the
wall can be satisfied by placing a vortex sheet at the wall, which
induces a normal velocity along the wall. The vortex sheet also
induces a tangential velocity along the wall, which is equal to the
strength of the vortex sheet [17]. The flow everywhere above the
wall is then the superposition of the potential flows induced by
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