Creep and Mechanical Properties of $Cu₆Sn₅$ and $(Cu,Ni)₆Sn₅$ at Elevated Temperatures

DEKUI MU, 1,2,3 HAN HUANG, 2 STUART D. MCDONALD, 1 and KAZUHIRO NOGITA 1

1.—Nihon Superior Centre for the Manufacture of Electronic Materials, School of Mechanical & Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia. 2.—School of Mechanical & Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia. 3.—e-mail: dekui.mu@uqconnect.edu.au

 $Cu₆Sn₅$ is the most common and important intermetallic compound (IMC) formed between Sn-based solders and Cu substrates during soldering. The $Cu₆Sn₅$ IMC exhibits significantly different thermomechanical properties from the solder alloys and the substrate. The progress of high-density threedimensional (3D) electrical packaging technologies has led to increased operating temperatures, and interfacial $Cu₆Sn₅$ accounts for a larger volume fraction of the fine-pitch solder joints in these packages. Knowledge of creep and the mechanical behavior of $Cu₆Sn₅$ at elevated temperatures is therefore essential to understanding the deformation of a lead-free solder joint in service. In this work, the effects of temperature and Ni solubility on creep and mechanical properties of $Cu₆Sn₅$ were investigated using energy-dispersive x-ray spectroscopy and nanoindentation. The reduced modulus and hardness of $\rm Cu_6Sn_5$ were found to decrease as temperature increased from $25^{\circ}\rm C$ to 150°C. The addition of Ni increased the reduced modulus and hardness of $Cu₆Sn₅$ and had different effects on the creep of $Cu₆Sn₅$ at room and elevated temperatures.

Key words: Intermetallic compounds, nanoindentation, mechanical properties, lead-free solder

INTRODUCTION

The continuous performance demands and progress of three-dimensional (3D) electrical packaging technologies has led to increased Joule heating and accompanying operating temperature¹ of lead-free solder joints. Moreover, the volume fraction of IMCs in a typical lead-free solder joint has increased, and interfacial IMCs account for a larger fraction of the joint microstructure because of the minimization of solder joints in 3D integrated circuits $(ICs)²$. The diameter of a solder joint in a traditional ball grid array (BGA) is typically around 100 μ m, although this is expected to reduce to approximately 1 μ m in 3D ICs.³ In this scenario, the solder alloys can conceivably be completely consumed and a solder joint may consist of a few grains of intermetallic compounds (MCs) .^{2,3} As a result, the deformation

behavior of a lead-free solder joint is determined by the mechanical properties of the IMCs rather than the solder alloys.⁴

 $Cu₆Sn₅$ is an important intermetallic compound (IMC) because it is commonly formed during interface reactions between most Sn-based solders and Cu substrates.⁵ For solder joints in 3D ICs, $Cu₆Sn₅$ is expected to be the dominant phase in the joint microstructure even after the aging processes. Thus, the mechanical properties of $Cu₆Sn₅$ play a determinant role in the overall deformation of a solder joint in 3D ICs. The mechanical properties of $Cu₆Sn₅$ have been studied both experimentally and theoretically during the last decade. $6-9$ Nanoindentation has been proven as a suitable method to investigate the mechanical properties of IMCs formed in diffusion samples, δ at the solder–substrate interface,^{7,9} and in bulk IMCs formed by solidification and diffusion.¹⁰ These previous (Received April 20, 2012; accepted August 6, 2012; Solidification and diffusion.^{**} These previous (Received April 20, 2012; accepted August 6, 2012; accepted August 6, 2012; accepted August 6, 2012; accepted August 6, 20

published online September 11, 2012)