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a b s t r a c t

In modeling highly flexible beams undergoing arbitrary rigid–elastic deformations, difficulties exist in
describing large rotations using rotational variables, including three Euler angles, two Euler angles, one
principal rotation angle plus three direction cosines of the principal rotation axis, four Euler parameters,
three Rodrigues parameters, and three modified Rodrigues parameters. The main problem is that such
rotational variables are either sequence-dependent and/or spatially discontinuous because they are not
mechanics-based variables. Hence, they are not appropriate for use as nodal degrees of freedom in
total-Lagrangian finite-element modeling. Moreover, it is difficult to apply boundary conditions on such
discontinuous and/or sequence-dependent rotational variables. This paper presents a new geometrically
exact beam theory that uses no rotation variables and has no singular points in the spatial domain. The
theory fully accounts for geometric nonlinearities and initial curvatures by using Jaumann strains, exact
coordinate transformations, and orthogonal virtual rotations. The derivations are presented in detail, fully
nonlinear governing equations and boundary conditions are presented, a finite element formulation is
included, and the corresponding governing equations for numerically exact analysis using a multiple
shooting method is also derived. Numerical examples are used to illustrate the problems of using rota-
tional variables and to demonstrate the accuracy of the proposed geometrically exact displacement-
based beam theory.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A flexible multibody system consists of interconnected rigid
and deformable components and each component may undergo
large translations and rotations (Shabana, 2005; Bauchau, 2010;
Kane et al., 1983). Modeling and analysis of a flexible multibody
system that undergoes large rotations is very challenging because
geometric nonlinearities exist in flexible components and equa-
tions of motion of rigid components are nonlinear ordinary differ-
ential equations (Shabana, 2005; Bauchau, 2010). Hence, nonlinear
finite-element modeling with iteration techniques is often used in
the modeling and analysis of flexible multibody systems. Even with
the use of finite elements, however, many challenging problems
still exist, and the most challenging task is how to accurately de-
scribe large rotations of flexible and rigid components without sin-
gularity problems in the space and time domains. One way to
reduce the coupling-induced complexity of governing equations
is to derive and use total-Lagrangian structural theories referred
directly to an inertial reference frame without using any floating
reference frames (Kane et al., 1987). Because the strain–displace-
ment relations of a total-Lagrangian structural theory fully account
for both rigid and elastic deformations, there is no need of

complicated, problem-dependent nonlinear terms to describe the
coupling of rigid and flexible components. Moreover, total-
Lagrangian nonlinear rotary inertial terms of a differential flexible
component have the same form as those of a rigid body (Pai, 2007).
However, challenging issues exist in the derivation and analysis of
geometrically exact total-Lagrangian displacement-based struc-
tural theories.

An initially curved beam undergoing large rigid–elastic defor-
mation requires three coordinate systems to describe its motion,
as shown in Fig. 1(a). The abc is a fixed rectangular coordinate sys-
tem used for reference, the xyz is a fixed orthogonal curvilinear
coordinate system used to describe the undeformed beam geome-
try, and the ngf is a moving orthogonal curvilinear coordinate sys-
tem used to describe the deformed beam geometry. Let ia, ib, and ic

be the unit vectors of the abc system; ix, iy, and iz be the unit vec-
tors of the xyz system; and i1, i2, and i3 be the unit vectors of the
ngf system. Moreover, u, v, and w represent the absolute displace-
ments of the observed reference point O with respect to (w.r.t.) the
x, y, and z axes, respectively, and s denotes the undeformed arc
length along the reference line starting from the beam root. Be-
cause u, v, and w are continuous functions of the spatial coordinate
s (and the time t if a dynamic problem), v0(� @v/@s), w0 and u0 exist
and they can exactly describe the reference line’s bending rotations
of any magnitude (Pai, 2007). However, a torsional angle / (see,
e.g., Fig. 1(a)) is still needed in order to describe the twisting of
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