Bioresource Technology 124 (2012) 446-454

Contents lists available at SciVerse ScienceDirect

Bioresource Technology

Effects of pretreatment of wheat bran on the quality of protein-rich residue for animal feeding and on monosaccharide release for ethanol production

Joost J.G.C. van den Borne^{a,*}, Mirjam A. Kabel^{b,c}, Mickaël Briens^{a,1}, Antonius F.B. van der Poel^a, Wouter H. Hendriks^{a,d}

^a Animal Nutrition Group, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands

^b Laboratory of Food Chemistry, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands

^c Royal Nedalco, P.O. Box 6, 4600 AA Bergen op Zoom, The Netherlands

^d Division of Nutrition, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80152, 3508 TD Utrecht, The Netherlands

HIGHLIGHTS

- ▶ Protein-rich residues from bioethanol production are used for animal feeding.
- ▶ Wheat bran was pretreated with increasing severity and hydrolysed enzymatically.
- ► A higher severity did not enhance fermentable sugar yield from wheat arabinoxylan.
- \blacktriangleright Increasing the temperature above 140 °C decreased the nutritional quality of protein.
- ► A lower pH during pretreatment increased digestibility of residual protein *in vitro*.

ARTICLE INFO

Article history: Received 5 May 2012 Received in revised form 11 August 2012 Accepted 13 August 2012 Available online 23 August 2012

Keywords: Wheat bran Heat treatment Reactive lysine Animal nutrition Saccharification

ABSTRACT

The effects of hydrothermal conditions for pretreating wheat bran on the quality of residual protein for animal feeding, and on monosaccharide release for ethanol production were studied according to a $4 \times 2 \times 2$ design with the factors, temperature (120, 140, 160, and 180 °C), acidity (pH 2.3 and 3.9), and retention time (5 and 10 min). Temperature affected the quality of residual protein for animal feeding. Pretreatment at 120 and 140 °C did not affect *O*-methylisourea-reactive lysine in protein-rich wheat bran residue, although total lysine decreased with increasing temperature at pH 2.3. At temperatures higher than 140 °C, reactive lysine decreased and melanoidins, furfural and 5-HMF increased. Lower acidity during pretreatment at 120 and 140 °C increased the digestibility of the residual wheat protein *in vitro* by 36%. Pretreatment conditions did not substantially affect the release of monomeric xylose and arabinose by hemicellulases, which suggests that arabinoxylans in wheat bran are well accessible for enzymes.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrothermal pretreatments in combination with an acid catalyst are established methods for the hydrolysis of (arabino)xylans from ligno-cellulosic materials (Mosier et al., 2005). Such treatments are commonly used to increase the availability of pentoses from non-food biomass like wheat bran and corn fibers for ethanol production (Margeot et al., 2009). Arabinoxylans are a major constituent in wheat bran (22–25% w/w) from which monomeric arabinose and xylose can be released after pretreatment and enzymatic hydrolysis (Hahn-Hägerdal et al., 2007; Hausser et al., 2011). Apart from ethanol, the fermentation process also yields large amounts of protein-rich residue, mainly originating from the proteins in corn and wheat kernels. This residue can be used as a valuable ingredient in animal feeds and may replace high-value protein sources currently used in the animal feed industry (Laser et al., 2009) such as soybean meal, potato protein and animal-derived proteins.

However, the nutritional quality of the protein in the residue may be reduced due to hydrothermal pretreatment by racemization (Friedman, 1999b) and cross-linking (Friedman, 1999a) of

Abbreviations: CS, combined severity; CV, coefficient of variation; DM, dry matter; 5-HMF, 5-hydroxymethyl-2-furfural; MRP, Maillard reaction product; OMIU, O-methylisourea; RT, retention time.

^{*} Corresponding author. Tel.: +31 317 482 912; fax: +31 317 484 260.

E-mail addresses: joost.vandenborne@wur.nl (J.J.G.C. van den Borne), mirjam. kabel@wur.nl (M.A. Kabel), m.briens@ibmc-cnrs.unistra.fr (M. Briens), thomas. vanderpoel@wur.nl (A.F.B. van der Poel). wouter.hendriks@wur.nl (W.H. Hendriks).

¹ Present address: Strasbourg University, Institut de Biologie Moléculaire et Cellulaire, 67087 Strasbourg Cedex, France.