FISEVIER

Contents lists available at SciVerse ScienceDirect

Bioresource Technology

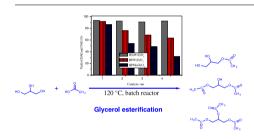
journal homepage: www.elsevier.com/locate/biortech

Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids

Shanhui Zhu a,b, Yulei Zhu a,c,*, Xiaoqing Gao , Tao Mo a,b, Yifeng Zhu a,b, Yongwang Li a,c

- ^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- ^b Graduate University of Chinese Academy of Sciences, Beijing 100039, PR China
- ^c Synfuels China Co. Ltd., Taiyuan 030032, PR China

HIGHLIGHTS


- ► H₄SiW₁₂O₄₀/ZrO₂ is an effective catalyst for glycerol esterification.
- A 93.6% combined selectivity of glyceryl diacetate and triacetate is achieved.
- ► H₄SiW₁₂O₄₀/ZrO₂ can be reused up to four consecutive runs without deactivation.
- ► H₄SiW₁₂O₄₀/ZrO₂ can be resistant to the impurities present in bulk glycerol.

ARTICLE INFO

Article history:
Received 29 September 2012
Received in revised form 28 November 2012
Accepted 1 December 2012
Available online 12 December 2012

Keywords: Glycerol Esterification Acetic acid Heteropolyacids Bioadditives

G R A P H I C A L A B S T R A C T

ABSTRACT

The synthesis of bioadditives for biofuels from glycerol esterification with acetic acid was performed over zirconia supported heteropolyacids catalysts using $H_4SiW_{12}O_{40}$ (HSiW), $H_3PW_{12}O_{40}$ (HPW) and $H_3PMo_{12}O_{40}$ (HPMo) as active compounds. The as-prepared catalysts were characterized by N_2 -physisorption, XRD, Raman spectroscopy, NH_3 -TPD, FTIR of pyridine adsorption and H_2O -TPD. Among the catalysts tested, $HSiW/ZrO_2$ achieved the best catalytic performance owing to the better combination of surface Brønsted acid sites and hydrothermal stability. A 93.6% combined selectivity of glyceryl diacetate and glyceryl triacetate with complete glycerol conversion was obtained at $120\,^{\circ}C$ and 4 h of reaction time in the presence of $HSiW/ZrO_2$. This catalyst also presented consistent activity for four consecutive reaction cycles, while HPW/ZrO_2 and $HPMo/ZrO_2$ exhibited distinct deactivation after reusability tests. In addition, $HSiW/ZrO_2$ can be resistant to the impurities present in bulk glycerol.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As the petroleum reserves deplete and concerns about environmental issues increase, the preparation of biofuels from biomass is stimulating growing interest (Chheda et al., 2007; Juan et al., 2011). In this context, biodiesel has gained considerable attention as a non-toxic, biodegradable and renewable alternative to petroleum-derived fuels. Biodiesel is usually manufactured by

E-mail address: zhuyulei@sxicc.ac.cn (Y. Zhu).

transesterification of plant and animal oils with methanol or ethanol, with glycerol as a co-product (Juan et al., 2011). With the rapid pace of biodiesel development and commercialization, glycerol is currently produced in a huge amount, which makes the price of glycerol decline sharply. Consequently, it is highly desirable to convert low-cost glycerol into value-added chemicals or materials. In addition, the biomass-derivate glycerol is a nontoxic, edible, and biodegradable compound containing highly multifunctional structure, making it as a versatile building block for the synthesis of a broad family of valuable derivatives by several catalytic processes involving oxidation (Hu et al., 2010; Tsuji et al., 2011), hydrogenolysis (Zhu et al., 2012a,b; Xia et al., 2012; Yuan et al., 2010), dehydration (Tsukuda et al., 2007),

^{*} Corresponding author at: State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China. Tel.: +86 351 7117097; fax: +86 351 7560668.