Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

Role of passivated N–F pairs in enhancing photoactivity of $ZnWO_4$ (010) surface: Emphasis on correlation between codoping forms and compensation mechanisms

Liming Sun^a, Xian Zhao^b, Xiufeng Cheng^b, Honggang Sun^b, Yanlu Li^b, Pan Li^b, Weiliu Fan^{a,*}

^a Department of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
^b State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

HIGHLIGHTS

- N-F codoping passivates the partially occupied states acted as trap of electrons.
- N_{ad}F_s codoping achieves good visible-light photoactivity of ZnWO₄.
- N_{ad}F_{ad}-codoped ZnWO₄ (010) surface has little sense to photocatalytic process.

G R A P H I C A L A B S T R A C T

We reveal the correlation between codoping forms and compensation mechanisms in N-F pairs and their different effects on enhancing photoactivity of $ZnWO_4$ (010) surface.

ARTICLE INFO

Article history: Received 16 May 2012 Received in revised form 7 September 2012 Accepted 16 September 2012 Available online 5 October 2012

Keywords: N–F codoping First-principles density function theory calculations Compensation mechanism Photocatalysis

ABSTRACT

We perform first-principles density function theory calculations to study the correlation between codoping forms and compensation mechanism in N–F pairs at ZnWO₄ (010) surface. Our study considers substitutional as well as adsorptive and interstitial codoping forms at ZnWO₄ (010) surface, and the results show that all the N_sF_s, N_sF_{ad}, N_{ad}F_s, and N_{ad}F_{ad} codoping forms can passivate the partially occupied states formed in the corresponding monodoped systems to enhance the photoactivity of ZnWO₄ (010) surface and decrease the transition energy of photoexcited electrons from the impurity levels to the conduction band minimum to low-energy area. There are four different compensation mechanisms in N–F pairs at ZnWO₄ (010) surface, corresponding to the four codoping forms, and different compensation mechanisms in N–F pairs result in different effects on photoactivity of ZnWO₄, such as the N_{ad}F_{ad} has little sense to photocatalytic process, due to the electrons only transferring between the N_{ad}–O_b π^* states. We expected that this knowledge could introduce some more general useful codoping concepts to the design of visible-light photocatalysts.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

As is well known, the photocatalytic activity of most stable semiconductor photocatalysts is not high enough for their commercial applications due to their narrow light-response range and relatively easy recombination of photoexcited electron-hole pairs, such as titania (TiO_2), which has received intense attention as a promising photocatalytic material for years [1,2]. Though monodoping with metal or nonmetal elements is a promising approach to reduce the absorption threshold to visible region [3–13], photogenerated current of monodoping is low as shown in experimental studies [14,15], because the partially occupied impurity bands can act as recombination centers to increase the recombination rate of the charge carriers [16]. The cooperative

^{*} Corresponding author. Tel.: +86 531 88366330; fax: +86 531 88365174. *E-mail address:* fwl@sdu.edu.cn (W. Fan).

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.09.073