Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Design and controllable synthesis of α -/ γ -Bi₂O₃ homojunction with synergetic effect on photocatalytic activity

Yuanyuan Sun, Wenzhong Wang*, Ling Zhang, Zhijie Zhang

State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China

HIGHLIGHTS

- ► Design and synthesis of α -/ γ -Bi₂O₃ homojunction.
- ► The α -/ γ -Bi₂O₃ homojunction possess the highest photocurrent and photocatalytic activities.
- ► The characterization of the existence of α -/ γ -Bi₂O₃ homojunction.
- Synergic effect between α -Bi₂O₃ and γ -Bi₂O₃ in the composite.

ARTICLE INFO

Article history: Received 6 May 2012 Received in revised form 24 September 2012 Accepted 25 September 2012 Available online 2 October 2012

Keywords: α -/ γ -Bi₂O₃ homojunction Synergetic Photocatalytic

ABSTRACT

A α -/ γ -Bi₂O₃ composite has been successfully prepared via a hydrothermal method. The as-prepared nanocrystals are characterized by the X-ray diffraction, Fourier transformation infrared spectrum, Scanning electron microscopy, Transmission electron microscopy, and high-resolution transmission electron microscopy examination. The homojunction between the α -Bi₂O₃ and γ -Bi₂O₃ is confirmed by the diffuse reflectance spectra and impedance spectrum. The photocatalytic activities of the samples were evaluated by the degradation of Rhodamine B as a model pollutant. The composite exhibited higher photocatalytic activity than bare α -Bi₂O₃ or γ -Bi₂O₃ in the degradation of RhB. The enhanced photocatalytic activity is attributed to the synergetic effect of the homojunction.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Photocatalysis has been intensively investigated as it is potential in the destruction of inorganic and organic pollutants [1–3], water splitting [4,5], and carbon dioxide photoconversion [6–8]. Since visible light accounts for larger proportion of the solar spectrum, a great number of undoped single-phase oxide semiconductor photocatalysts responding to visible light have been developed, such as BiVO₄ [9], CaBi₂O₄ [10], Bi₂MoO₆ [11,12], and Bi₂O₃ [13,14]. However, the photocatalytic activities of these photocatalysts are still not satisfying from the viewpoint of practical application. It is essential to design and synthesize more efficient visible-lightdriven photocatalysts.

Previous studies on TiO_2 have shown that the photocatalytic activity of a photocatalyst is basically determined by the intrinsic properties, including crystal phase [15], defects [16], surface area [17], exposed facets [18], etc. In early 1990s, it was found the

TiO₂ photocatalysts with mixed phases of anatase and rutile exhibited enhanced activity compared to bare one, which was attributed to the charge transfer between anatase and rutile [19]. Many investigations have been carried out on the mixed-phase of anatase and rutile [20,21]. Xu and co-workers found that mesoporous TiO₂ with brookite and anatase nanocrystals exhibited higher photocatalytic activity in the degradation of acetone [22]. Li demonstrated that small rutile crystallites interweaved with anatase crystallites which benefited electron transfer at the anatase/rutile interface and thus effectively created catalytic "hot spots" [23]. Generally, a material with different phases possesses different band gap and flat band. Therefore, a homojunction could be built between different crystal phase given the two phases are in close contact, which will lead to efficient electron-hole separation and higher catalytic reactivity. Although the wide band gap of TiO₂ determines it to be activated under ultraviolet (UV) light only, which limited its practical application, the method of constructing a homojunction is proved to be a good way to strengthen the photocatalytic activity. These findings impulse a new beginning for the design of non-titania based visible-light driven photocatalysts with mixed phase.

^{*} Corresponding author. Tel.: +86 21 5241 5295; fax: +86 21 5241 3122. *E-mail address:* wzwang@mail.sic.ac.cn (W. Wang).

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.09.084