Contents lists available at ScienceDirect

Mathematical and Computer Modelling

In this paper, we define a class $\widetilde{B}_k(\alpha, \rho, \beta, \gamma)$ of analytic functions by using a generalized

Robertson function which generalizes a number of classes studied earlier such as the

class of strongly Bazilevic functions. Some interesting properties of this class, including

coefficient difference problems, arc length and a sufficient condition for univalency, are

On strongly Bazilevic functions associated with generalized **Robertson functions**

ABSTRACT

investigated.

Muhammad Arif^{a,*}, Mohsan Raza^b, Khalida Inayat Noor^b, Sarfraz Nawaz Malik^b

^a Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan

^b Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan

ARTICLE INFO

Article history: Received 9 February 2011 Received in revised form 26 April 2011 Accepted 27 April 2011

Keywords: Close-to-convex functions Strongly Bazilevic functions Robertson function Bounded boundary rotations

1. Introduction

Let $P^{\mu}_{\nu}(\rho)$ be the class of functions p(z) analytic in the open unit disc $E = \{z : |z| < 1\}$ such that p(0) = 1 and satisfying the condition

$$\int_0^{2\pi} \left| \left\{ \frac{\operatorname{Re} e^{i\alpha} p(z) - \rho \cos \alpha}{1 - \rho} \right\} \right| d\theta \le k\pi \cos \alpha, \quad z = r e^{i\theta},$$

where $k \ge 2, 0 \le \rho < 1, \alpha$ is real, $|\alpha| < \frac{\pi}{2}$. For $k = 2, \alpha = 0$ and $\rho = 0$, the class $P_k^{\alpha}(\rho)$ reduces to the class P of functions p(z) analytic in *E* with p(0) = 1 and whose real part is positive.

Let $V_k^{\alpha}(\rho)$ be the class of functions f(z) analytic in E with f(0) = 0, f'(0) = 1 and satisfying the condition

$$1 + \frac{zf''(z)}{f'(z)} \in P_k^{\alpha}(\rho).$$
(1.1)

When $\rho = 0$ and $\alpha = 0$, we obtain the class $V_k(k \ge 2)$ of functions with bounded boundary rotation. The class $V_k^{\alpha}(\rho)$ was introduced and studied in some detail in [1]. It can easily be shown that $f(z) \in V_k^{\alpha}(\rho)$ if and only if there exists $f_1(z) \in V_k$ such that

$$f'(z) = (f'_1(z))^{(1-\rho)e^{-i\alpha}\cos\alpha}.$$
(1.2)

We now define a class $\widetilde{B}_k(\alpha, \rho, \beta, \gamma)$ of analytic functions by using the class $V_k^{\alpha}(\rho)$ as follows.

* Corresponding author.

© 2011 Elsevier Ltd. All rights reserved.

E-mail addresses: marifmaths@yahoo.com (M. Arif), mohsan976@yahoo.com (M. Raza), khalidanoor@hotmail.com (K.I. Noor), snmalik110@yahoo.com (S.N. Malik).

^{0895-7177/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2011.04.033