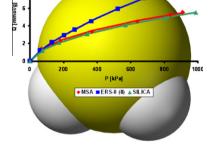

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

Short communication

High pressure hydrogen sulphide adsorption on silica-aluminas


Marco Tagliabue^{a,*}, Giuseppe Bellussi^b, Patrizia Broccia^c, Angela Carati^b, Roberto Millini^b, Paolo Pollesel^b, Caterina Rizzo^b

^a eni S.p.A., Research Center for Unconventional Energies, v. G. Fauser 4, 28100 Novara, Italy ^b eni S.p.A., Refining & Marketing Division, v. F. Maritano 26, 20097 San Donato M.se, Italy ^c eni S.p.A., Exploration & Production Division, v. Emilia 1, 20097 San Donato M.se, Italy

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- We provide H₂S adsorption isotherms on different silicaaluminas.
- Results point to prominent role of micropores in determining adsorption performances.
- ► Single-gas (H₂S, CO₂, CH₄) descriptors evidence separation opportunities.
- ► A sample is proposed for H₂S bulk removal from natural gas.

ARTICLE INFO

Article history: Received 11 July 2012 Received in revised form 23 August 2012 Accepted 24 August 2012 Available online 10 September 2012

Keywords: Hydrogen sulphide Natural gas Adsorption Silica Alumina Sweetening Pressure swing

1. Introduction

Natural Gas (NG) consumption grew significantly (+7.5%) in 2010, in spite of the World economical crisis [1]. Furthermore, NG share of the global energy demand is foreseen to grow unabated for decades to come [2].

* Corresponding author. E-mail address: marco.tagliabue@eni.com (M. Tagliabue).

ABSTRACT Applicability of amorphous silica-alumina to hydrogen sulphide bulk removal from natural gas has been discussed on the basis of thermodynamic descriptors obtained from single-gas adsorption tests. Experiments performed at 303 K within a pressure range from vacuum to 1000 kPa have shown the prominent role of narrow micropores in determining key adsorption performances, regardless to sample chemical

composition. A specific microporous silica-alumina has been proposed as suitable adsorbent according to its (i) hydrogen sulphide Henry's selectivity over methane; (ii) hydrogen sulphide specific capacity at 500 kPa; (iii) hydrogen sulphide working capacity, assuming an isothermal depressurisation from 500 kPa to 50 kPa; and (iv) textural stability. Activity involving experiments with mixtures resembling raw natural gas has to be planned in order to confirm these promising clues.

© 2012 Elsevier B.V. All rights reserved.

Such scenario is due to (i) implementation of more efficient transportation systems; (ii) remarkable reserves found; and (iii) NG clean-burning characteristics. Producers have till now developed the simplest and cheapest fields. In future, however they will have to contend with reservoirs containing increasingly sour gas. In fact, some 40% of remaining NG reserves is sour, with about 10 Gm³ containing more than 10 vol% hydrogen sulphide and at least 20 Gm³ containing more than 10 vol% vol carbon dioxide [3]. In most cases hydrogen sulphide and carbon dioxide accompanies one to each other. As a consequence, energy companies are

^{1385-8947/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.08.076