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a b s t r a c t

Localized differential quadrature (LDQ) method is employed to solve two-dimensional stream function

formulation of incompressible Navier–Stokes equations. Being developed by introducing the localiza-

tion concept to the general differential quadrature (GDQ) method, the employment of LDQ method

becomes efficient and flexible, especially for the simulations of large scale computations. By introdu-

cing the Lagrange stream function to vorticity transport equation, the governing equation—the fourth-

order partial differential equation (PDE)—is derived. To stably obtain the solutions of the fourth-order

PDE, a fictitious point method is included to treat the boundary conditions. To examine the present

scheme, two different types of classic benchmark fluid flow problems are proposed, including driven

cavity flow problems and backward-facing step flow problems. The good agreement of solutions

demonstrate the robustness and feasibility of the proposed scheme. Conclusively, the LDQ method

is sufficient and appropriate enough to simulate the solutions of stream function formulation of

Navier–Stokes equations with various Reynolds numbers.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Differential quadrature (DQ) method is first presented by Bell-
man et al. [1,2], and the main idea is originated from the concept of
integral quadrature. Through expressing a derivative as a linear
weighted sum of all functional values along the direction of its
respective coordinate and solving the resulting matrix, the weight-
ing coefficients of the derivative can be determined. After deter-
mining the weighting coefficients, the solution at the interested
mesh point can be accurately obtained even though few computa-
tional points are employed. The resulting matrix, however, formed
for obtaining the weighting coefficients is easy to be ill-condi-
tioned, and thus the total amount of grid points for each direction
usually cannot exceed 13 [3]. To improve the feasibility of the DQ
method, Quan and Chang [4,5] derived explicit formulations to
calculate the weighting coefficients of the derivatives of first- and
second-order through selecting the test function as the Lagrange
interpolation polynomials. Moreover, because the adoption of the
Lagrange polynomials, the distribution of mesh grids is unneces-
sary to be uniform, and thus it is allowed to adjust the mesh to
physically fit to the predicted distribution of real field. For a
boundary layer problem, fining the size of mesh grids near the
boundary can improve the scheme to accurately catch the rapidly

variation near the boundary within few grid points. In contrast to
finite difference method (FDM), the distribution of mesh grids is
more flexible, and the simulation of the problem is more efficient.
Nevertheless, the employment of DQ method is still confined to the
problem which is governed by first- and second-order partial
differential equations, because the determination of the weighting
coefficients for higher order derivatives is quite complicated. Until
1990, Shu and Richard [6] presented a general DQ (GDQ) method,
by calculating a recurrence relationship, the weighting coefficients
of arbitrary-order derivatives can be effortlessly obtained.

Shu et al. [7,8] utilized the GDQ schemes to simulate the
solutions of two-dimensional incompressible Navier–Stokes equa-
tions. Lo et al. [9] adopted the GDQ to solve velocity–vorticity
formulation of Navier–Stokes equations for 3D natural convection
problem. In contrast to the applications of other numerical
methods, however, the allowed amount of mesh grids for GDQ
method is still limited. The reason is that the resulting matrix is
easy to be ill-conditioned as a large amount of mesh grids is used.
In addition, the requirement of storage for resulting matrix
becomes quite large because the weighting coefficients are calcu-
lated by considering the whole computational points along the
direction of its derivative. In other words, the amount of mesh
grids is not allowed to be large when GDQ scheme is employed.
Therefore, by locally choosing the reference points, a groundbreak-
ing concept—localization—is proposed by Shu [3] to overcome the
defect of the application of GDQ method, and the method is the so-
called localized differential quadrature (LDQ) method. By locally
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