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a b s t r a c t

Over the last decade, there has been a considerable amount of new numerical methods being developed

for solving the Cauchy problems of elliptic operators. In this paper, with some new classes of numerical

experiments, we re-verify the conclusions in the review article [Wei T, Hon YC, Ling L. Method of

fundamental solutions with regularization techniques for Cauchy problems of elliptic operators. Eng

Anal Bound Elem 2007;31(4):373–85.] concerning the effectiveness of solving Cauchy problems with

the method of fundamental solutions.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cauchy problems of elliptic operators are typically ill-posed
problems whose solutions do not continuously depend on the
input Cauchy data. However, these ill-posed problems play
important roles in many science and engineering models such
as steady-state inverse heat conduction [10], electro-cardiol-
ogy [6], nondestructive testing [11], and so on. For the sake of
numerical computations, a small perturbation or error in the
input may lead to an enormous error in the numerical solution.

The Cauchy problem we consider is in the form of

Lu¼ 0, in O�Rd,

@ðkÞn u¼ gk, on G,kAf0,1g, ð1Þ

where L is a differential operator of elliptic type, O is a bounded
simply connected domain in Rd, GD! @O is the Cauchy boundary,
and @ðkÞn is the k-th order normal-derivative. The goal here is to
determine a distribution function uAC2ðOÞ \ C1ðOÞ that satis-
fies (1) with the provided Cauchy data gk, kAf0,1g.

2. Redundancy in Cauchy data

For convenience, researchers usually pick exact solutions that
satisfy the governing equation Lu¼ 0 in the whole space Rd in
order to generate the Cauchy data gk, kAf0,1g. This Cauchy data is
then used to verify different numerical methods for solving (1). In

some situations, this approach may yield overdetermined test
problems—the key message we want to deliver in this paper.
Although it is not our aim to come up with a general mathema-
tical theory about the redundancy in Cauchy data, below is a

specific situation in which the Neumann boundary data is not

necessary to guarantee unique solution in the Cauchy problem.
Consider a Cauchy problem of the Laplace operator in two-

dimensions for simplicity. Suppose the exact Cauchy solution u�

of (1) is harmonic everywhere in R2. For simplicity, let us
consider O being the unit circle and the Cauchy boundary G
being the upper half. Since u� is harmonic and, therefore, analytic,
the Dirichlet data g0ðyÞ, yA I :¼ ½0,p�, is real analytic. Now further
assume that the Taylor expansion of u� at the origin has a radius
of convergence R41. Then the two (1D real) analytic functions,
u�jr ¼ 1ðyÞ and g0ðyÞ, agree on I; by the unique continuation of
analytic functions, they also agree on ½�p=2,3p=2�. Having Dirich-
let boundary condition on the whole boundary @O yields the
Dirichlet (forward) problem and (1) has unique solution without
the Neumann boundary condition.

Note that in the above situation, having a unique solution does
not imply that the solution process is stable. The Cauchy problem
is still ill-posed and is highly sensitive to any noise in the Cauchy
data. We observe that the test problems in some literatures, i.e.

In [5]: u� ¼ y3�3yx2,
In [9]: u� ¼ xy,
In [16]: u� ¼ expð0:5xÞsinð0:5yÞ and u� ¼ xþy,
In [17]: u� ¼ x3�3xy2þexpð2yÞsinð2xÞ�expðxÞcosðyÞ,
In [19]: u� ¼ 10y�9, and others in [1–4,13–15],
the tested Cauchy problems with globally harmonic solutions

may also have numerically redundant Cauchy data.
Numerically, we can sometimes solve the Cauchy problem (1)

with only one boundary condition on G. Figs. 1 and 2 show some
numerical reconstructions when we apply the MFS directly
(without regularization) to solve (1) with Dirichlet data only.
We show only a subset of the collocation points in order to keep
the figures easily readable. Figs. 1(a) and 1(b) are the recon-
structed solutions in a unit circle and square, respectively, using
Dirichlet data g0 ¼ expðxÞcosðyÞ ¼ u�jG (with Dg0 ¼ 0). It can be
seen that the numerical solutions closely agree with the
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