FISFVIFR

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

Strong convergence theorems for fixed point problems, variational inequality problems and system of generalized mixed equilibrium problems

Yekini Shehu

Mathematics Institute, African University of Science and Technology, Abuja, Nigeria

ARTICLE INFO

Article history: Received 12 August 2010 Received in revised form 15 April 2011 Accepted 18 April 2011

Keywords:

 ϕ -asymptotically nonexpansive mappings Generalized mixed equilibrium problems Variational inequality problem Hybrid method Banach spaces

ABSTRACT

The purpose of this paper is to construct a new iterative scheme by hybrid methods to approximate a common element of the common fixed points set of a finite family of ϕ -asymptotically nonexpansive mappings, the solutions set of a variational inequality problem and the solutions set of a system of generalized mixed equilibrium problems in a 2-uniformly convex real Banach space which is also uniformly smooth. Then, we prove strong convergence of the scheme to a common element of the three sets. Our results extend many known recent results in the literature.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let *E* be a real Banach space with dual E^* and *C* be nonempty, closed and convex subset of *E*. A mapping $T:C\to C$ is called *nonexpansive* if

$$||Tx - Ty|| < ||x - y||, \quad \forall x, y \in C.$$
 (1.1)

A point $x \in C$ is called a fixed point of T if Tx = x. The set of fixed points of T is denoted by $F(T) := \{x \in C : Tx = x\}$. We denote by J, the normalized duality mapping from E to 2^{E^*} defined by

$$J(x) = \{ f \in E^* : \langle x, f \rangle = ||x||^2 = ||f||^2 \}.$$

The following properties of J are well known (the reader can consult [1–3] for more details).

- (1) If E is uniformly smooth, then J is norm-to-norm uniformly continuous on each bounded subset of E.
- (2) $J(x) \neq \emptyset$, $x \in E$.
- (3) If E is reflexive, then I is a mapping from E onto E^* .
- (4) If *E* is smooth, then *J* is single valued.

Throughout this paper, we denote by ϕ , the functional on $E \times E$ defined by

$$\phi(x, y) = ||x||^2 - 2\langle x, J(y) \rangle + ||y||^2, \quad \forall x, y \in E.$$
(1.2)

Let C be a nonempty subset of E and let T be a mapping from C onto E. A point $p \in C$ is said to be an *asymptotic fixed point* of T if C contains a sequence $\{x_n\}_{n=0}^{\infty}$ which converges weakly to P and $\lim_{n\to\infty} \|x_n - Tx_n\| = 0$. The set of asymptotic fixed points of P is denoted by $\widehat{F}(T)$. We say that a mapping P is *relatively nonexpansive* (see, for example, [4–8]) if the following conditions are satisfied:

E-mail address: deltanougt2006@yahoo.com.