Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Strong convergence theorems for nonlinear mappings, variational inequality problems and system of generalized mixed equilibrium problems

Yekini Shehu

Mathematics Institute, African University Science and Technology, Abuja, Nigeria

ARTICLE INFO

Article history: Received 26 July 2010 Received in revised form 16 May 2011 Accepted 16 May 2011

Keywords:

Relatively quasi-nonexpansive mappings Weak relatively nonexpansive mapping Generalized mixed equilibrium problems Variational inequality problem Banach spaces

ABSTRACT

In this paper, we construct a new iterative scheme by hybrid method and prove strong convergence theorems for approximation of a common element of set of common fixed points of an infinite family of relatively quasi-nonexpansive mappings, set of solutions to a variational inequality problem and set of common solutions to a system of generalized mixed equilibrium problems in a 2-uniformly convex real Banach space which is also uniformly smooth. Furthermore, using our iterative scheme, we prove strong convergence theorem to a common element of the set of fixed point of a weak relatively nonexpansive mapping, set of solutions to a variational inequality problem and the set of common solutions to a system of generalized mixed equilibrium problems. Finally, we give applications of our results in a Banach space. Our results extend many important recent results in the literature.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let *E* be a real Banach space with dual E^* and *C* be a nonempty, closed and convex subset of *E*. A mapping $T : C \to C$ is called *nonexpansive* if

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$
 (1.1)

A point $x \in C$ is called a fixed point of T if Tx = x. The set of fixed points of T is defined as $F(T) := \{x \in C : Tx = x\}$. A mapping $T : C \to C$ is called *quasi-nonexpansive* if

 $||Tx - x^*|| \le ||x - x^*||, \quad \forall x \in C, \ x^* \in F(T).$

It is clear that every nonexpansive mapping with nonempty set of fixed points is quasi-nonexpansive. We denote by J the normalized duality mapping from E to 2^{E^*} defined by

 $J(x) = \{ f \in E^* : \langle x, f \rangle = ||x||^2 = ||f||^2 \}.$

The following properties of J are well known (The reader can consult [1-3] for more details):

(1) If E is uniformly smooth, then J is norm-to-norm uniformly continuous on each bounded subset of E.

(2) $J(x) \neq \emptyset, x \in E$.

- (3) If *E* is reflexive, then *J* is a mapping from *E* onto E^* .
- (4) If *E* is smooth, then *J* is single-valued.

E-mail address: deltanougt2006@yahoo.com.

^{0895-7177/\$ –} see front matter s 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2011.05.035