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a b s t r a c t

In this paper, we proposed an algorithm for solving the linear systems of matrix equations
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over the generalized (P,Q )-reflexive matrix Xl ∈ Rn×m (A(i)
l ∈
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l ∈ Rm×q, C (i)

∈ Rp×q, l = 1, 2, . . . ,N, i = 1, 2, . . . ,M). According to the
algorithm, the solvability of the problem can be determined automatically. When the
problem is consistent over the generalized (P,Q )-reflexive matrix Xl (l = 1, . . . ,N),
for any generalized (P,Q )-reflexive initial iterative matrices Xl(0) (l = 1, . . . ,N), the
generalized (P,Q )-reflexive solution can be obtained within finite iterative steps in the
absence of roundoff errors. The unique least-norm generalized (P,Q )-reflexive solution
can also be derived when the appropriate initial iterative matrices are chosen. A sufficient
and necessary condition for which the linear systems of matrix equations is inconsistent
is given. Furthermore, the optimal approximate solution for a group of given matrices
Yl (l = 1, . . . ,N) can be derived by finding the least-norm generalized (P,Q )-reflexive
solution of a new corresponding linear system of matrix equations. Finally, we present a
numerical example to verify the theoretical results of this paper.
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1. Introduction

Throughout the paper, Rn will denote the complex n-vector space and the set of n×mmatrices by Rn×m. For a matrix A ∈

Rm×n, ‖A‖ represents its Frobenius norm, R(A) represents its column space, tr(A) represents its trace and vec(·) represents
the vec operator, i.e., vec(A) = (aT1, a

T
2, . . . , a

T
n)

T for the matrix A = (a1, a2, . . . , an) ∈ Rm×n, ai ∈ Rm, i = 1, 2, . . . , n. A⊗ B
stands for the Kronecker product of matrices A and B. In [1], the definition and some properties of generalized reflexive
(anti-reflexive) matrix have been presented.

In [2], Peng and Hu presented the conditions for the solvability of matrix equation AX = B over reflexive or anti-reflexive
matrices and the conditions for the solvability of matrix equation AXB = C over reflexive matrices have been presented
in [3]. The sufficient and necessary conditions for the solvability ofmatrix equation AHXB = C over reflexive or anti-reflexive
matriceswere provided in [4]. By using the generalized singular value decomposition, a necessary and sufficient condition for
the matrix equation AXB = D over generalized reflexive matrices was given and the solution set was constructed explicitly
when it is nonempty in [5]. In [6], the authors considered the generalized reflexive solutions for a class of matrix equations
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