Contents lists available at ScienceDirect

ELSEVIER

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

A finite iterative algorithm for solving the generalized (P, Q)-reflexive solution of the linear systems of matrix equations^{*}

Xiang Wang*, Wuhua Wu

Department of Mathematics, Nanchang University, Nanchang 330031, China

ARTICLE INFO

Article history: Received 30 December 2010 Received in revised form 12 May 2011 Accepted 12 May 2011

Keywords: Linear systems of matrix equations Generalized reflexive matrix Iterative algorithm

ABSTRACT

In this paper, we proposed an algorithm for solving the linear systems of matrix equations $\int \sum_{i=1}^{N} A_i^{(1)} X_i B_i^{(1)} = C^{(1)},$

: over the generalized (P, Q)-reflexive matrix $X_l \in \mathbb{R}^{n \times m} (A_l^{(i)} \in \sum_{i=1}^N A_i^{(M)} X_i B_i^{(M)} = C^{(M)}$.

 $R^{p \times n}, B_l^{(i)} \in R^{m \times q}, C^{(i)} \in R^{p \times q}, l = 1, 2, ..., N, i = 1, 2, ..., M)$. According to the algorithm, the solvability of the problem can be determined automatically. When the problem is consistent over the generalized (P, Q)-reflexive matrix X_l (l = 1, ..., N), for any generalized (P, Q)-reflexive initial iterative matrices $X_l(0)$ (l = 1, ..., N), the generalized (P, Q)-reflexive solution can be obtained within finite iterative steps in the absence of roundoff errors. The unique least-norm generalized (P, Q)-reflexive solution can also be derived when the appropriate initial iterative matrices are chosen. A sufficient and necessary condition for which the linear systems of matrix equations is inconsistent is given. Furthermore, the optimal approximate solution for a group of given matrices Y_l (l = 1, ..., N) can be derived by finding the least-norm generalized (P, Q)-reflexive solution of a new corresponding linear system of matrix equations. Finally, we present a numerical example to verify the theoretical results of this paper.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout the paper, \mathbb{R}^n will denote the complex *n*-vector space and the set of $n \times m$ matrices by $\mathbb{R}^{n \times m}$. For a matrix $A \in \mathbb{R}^{m \times n}$, ||A|| represents its Frobenius norm, $\mathbb{R}(A)$ represents its column space, tr(A) represents its trace and $vec(\cdot)$ represents the vec operator, i.e., $vec(A) = (a_1^T, a_2^T, \ldots, a_n^T)^T$ for the matrix $A = (a_1, a_2, \ldots, a_n) \in \mathbb{R}^{m \times n}$, $a_i \in \mathbb{R}^m$, $i = 1, 2, \ldots, n.A \otimes B$ stands for the Kronecker product of matrices A and B. In [1], the definition and some properties of generalized reflexive (anti-reflexive) matrix have been presented.

In [2], Peng and Hu presented the conditions for the solvability of matrix equation AX = B over reflexive or anti-reflexive matrices and the conditions for the solvability of matrix equation AXB = C over reflexive matrices have been presented in [3]. The sufficient and necessary conditions for the solvability of matrix equation AXB = C over reflexive or anti-reflexive matrices were provided in [4]. By using the generalized singular value decomposition, a necessary and sufficient condition for the matrix equation AXB = D over generalized reflexive matrices was given and the solution set was constructed explicitly when it is nonempty in [5]. In [6], the authors considered the generalized reflexive solutions for a class of matrix equations

This work is supported by the NNSF of China No. 10961010, and NSF of Jiangxi, China No. 2010GZS0137.

^{*} Corresponding author. E-mail address: wangxiang49@ncu.edu.cn (X. Wang).

^{0895-7177/\$ –} see front matter ${\rm \odot}$ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2011.05.021