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Linear systems of matrix equations RP>1 BI(') e R4, c® ¢ R4 = 1,2,...,N,i = 1,2,...,M). According to the

Generalized reflexive matrix algorithm, the solvability of the problem can be determined automatically. When the

Iterative algorithm problem is consistent over the generalized (P, Q)-reflexive matrix X; (I = 1,...,N),
for any generalized (P, Q)-reflexive initial iterative matrices X;(0) (I = 1,...,N), the

generalized (P, Q)-reflexive solution can be obtained within finite iterative steps in the
absence of roundoff errors. The unique least-norm generalized (P, Q)-reflexive solution
can also be derived when the appropriate initial iterative matrices are chosen. A sufficient
and necessary condition for which the linear systems of matrix equations is inconsistent
is given. Furthermore, the optimal approximate solution for a group of given matrices
Y, (I = 1,...,N) can be derived by finding the least-norm generalized (P, Q )-reflexive
solution of a new corresponding linear system of matrix equations. Finally, we present a
numerical example to verify the theoretical results of this paper.
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1. Introduction

Throughout the paper, R"” will denote the complex n-vector space and the set of n x m matrices by R"*™. For a matrix A €
R™ " ||A|| represents its Frobenius norm, R(A) represents its column space, tr(A) represents its trace and vec(-) represents
the vec operator, i.e., vec(A) = (al, dl, ..., al)T for the matrix A = (a1, az, ..., ay) € R™", a; €R™,i=1,2,...,n.AQB
stands for the Kronecker product of matrices A and B. In [1], the definition and some properties of generalized reflexive
(anti-reflexive) matrix have been presented.

In [2], Peng and Hu presented the conditions for the solvability of matrix equation AX = B over reflexive or anti-reflexive
matrices and the conditions for the solvability of matrix equation AXB = C over reflexive matrices have been presented
in [3]. The sufficient and necessary conditions for the solvability of matrix equation A”XB = C over reflexive or anti-reflexive
matrices were provided in [4]. By using the generalized singular value decomposition, a necessary and sufficient condition for
the matrix equation AXB = D over generalized reflexive matrices was given and the solution set was constructed explicitly
when it is nonempty in [5]. In [6], the authors considered the generalized reflexive solutions for a class of matrix equations
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