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a b s t r a c t

Partial metric spaces were introduced by S. G. Matthews in 1994 as a part of the study
of denotational semantics of dataflow networks. In this article, we prove fixed point
theorems for generalized weakly contractive mappings on partial metric spaces. These
theorems generalize many previously obtained results. An example is given to show that
our generalization from metric spaces to partial metric spaces is real.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

The notion of a partial metric space (PMS) was introduced in 1992 by Matthews [1,2]. The PMS is a generalization of the
usualmetric space inwhich the d(x, x) are no longer necessarily zero. Recently, many authors have focused on partial metric
spaces and their topological properties (see e.g. [3–6]).

A partial metric space (see e.g. [1,2]) is a pair (X, p : X × X → R+) (where R+ denotes the set of all non-negative real
numbers) such that:

(PM1) p(x, y) = p(y, x) (symmetry);
(PM2) if 0 ≤ p(x, x) = p(x, y) = p(y, y) then x = y (equality);
(PM3) p(x, x) ≤ p(x, y) (small self-distances);
(PM4) p(x, z)+ p(y, y) ≤ p(x, y)+ p(y, z) (triangularity);

for all x, y, z ∈ X .
For a partial metric p on X , the function dp : X × X → R+ given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1.1)

is a (usual) metric on X . Each partial metric p on X generates a T0 topology τp on X with a base of the family of open p-balls
{Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x)+ ε} for all x ∈ X and ε > 0.

Definition 1 (See e.g. [1,2,6]).

(i) A sequence {xn} in a PMS (X, p) converges to x ∈ X if and only if p(x, x) = limn→∞ p(x, xn).
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