ELSEVIER

Contents lists available at SciVerse ScienceDirect

Applied Catalysis A: General

journal homepage: www.elsevier.com/locate/apcata

Promotional effect of F-doped V₂O₅–WO₃/TiO₂ catalyst for NH₃-SCR of NO at low-temperature

Shule Zhang, Hongyu Li, Qin Zhong*

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China

ARTICLE INFO

Article history: Received 5 May 2012 Received in revised form 28 May 2012 Accepted 30 May 2012 Available online 7 June 2012

Keywords: F-doped V₂O₅-WO₃/TiO₂ SCR Oxygen vacancies W⁵⁺ Superoxide ions

ABSTRACT

A F-doped V_2O_5 – WO_3 / TiO_2 has been developed for low-temperature selective catalytic reduction (SCR) of NO with NH₃. The aim of this novel design was to improve the activity of a catalyst with low WO₃ loading. Analysis by PL spectra, XRD, XPS and EPR showed that F doping improved the interaction of WO₃ with TiO_2 by oxygen vacancies to facilitate the formation of W⁵⁺ that was important to improve the formation of superoxide ions. The experimental results showed that NO conversion could be improved by F doping and $V_1W_3TiF_{1.35}$ showed the highest NO removal efficiency in SCR reaction at low temperatures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nitrogen oxides (NO_X) are very harmful for the ecosystem and humanity. It contributes to photochemical smog, acid rain, ozone depletion and greenhouse effect [1]. The selective catalytic reduction (SCR) of NO_X with NH₃ in the presence of excess oxygen has been proven to be an efficient process for the removal of NO_X from stationary sources [1–3]. Many catalyst systems, such as V₂O₅-WO₃/TiO₂ [4–6], Mn/TiO₂ [7], CeO₂/TiO₂ [8] and many metal composite oxide catalysts [9,10], have also been extensively investigated. Among these catalysts, V₂O₅ + WO₃/TiO₂ has been applied as an industrial catalyst for many years. The industrial operations are carried out at 350-400 °C [11,12]. However, the high concentration of ash (e.g. K₂O, CaO and As₂O₃) in the flue gas reduces its performance and longevity at this temperature [12,13]. In addition, the high temperature may cause side reactions, such as oxidation of NH₃ into NO and formation of N₂O. However, this could be avoided by locating the SCR unit downstream of the precipitator and even downstream of desulfurizer, through the development of a low temperature (<250 °C) SCR.

 WO_3 content of industrial catalyst is about 9% (more details were shown in Table S1 of the Supplementary Material). Many researches have reported the effects of WO_3 in V_2O_5 – WO_3 /TiO $_2$ are that: (1) WO_3 increases the amounts of Lewis acid over catalyst [14], (2) WO_3 inhibits the initial sintering of TiO $_2$ [15], (3) WO_3 improves SO_2 resistance [11], (4) the temperature window for SCR reaction is

greatly widened [4]. Recently, efforts have been made to study performance of V_2O_5 – WO_3 / TiO_2 such as 1.7–2.5% V_2O_5 –8% WO_3 / TiO_2 [16,17], Ce-doped 0.1% V_2O_5 –6% WO_3 / TiO_2 [18], 1% V_2O_5 –9% WO_3 / TiO_2 [4], 1% V_2O_5 –10% WO_3 / TiO_2 [5], 3% V_2O_5 –9% WO_3 / TiO_2 [6], However, these catalysts cannot be applied to investigate the WO_3 characterization and reduce the WO_3 loading.

It has been reported [19,20] that the reduced WO₃ can be oxidized by oxygen and oxygen may be reduced to superoxide ions. The superoxide ions over the catalysts are important to enhance the activity of low-temperature SCR of NO with NH₃ [21]. Therefore, the aim of this study is to improve the interaction of WO₃ with TiO₂ by F doping to increase the number of the reduced WO_3 (W^{5+}) and to promote the SCR activity of a catalyst with low WO₃ loading. To the best of our knowledge, F-doped V₂O₅-WO₃/TiO₂ as a catalyst for NO reduction with NH₃ at low-temperature has not yet been studied. In this study, we found that F doping improved the interaction of WO₃ with TiO₂ by oxygen vacancies to facilitate the formation of W⁵⁺ that was important to improve the formation of superoxide ions. It was responsible for the improvement of the catalyst by F doping. We also investigated the SCR activity of the catalyst at low temperatures when H₂O and SO₂ existing. Therefore the information in this paper would contribute to a better understanding of the low-temperature SCR processes over V₂O₅-WO₃/TiO₂ catalyst.

2. Experimental

2.1. Catalyst preparation

The F-doped V_2O_5 – WO_3 / TiO_2 catalyst was prepared by a sol–gel method for F-doped titania preparation, followed by impregnation

^{*} Corresponding author. Tel.: +86 25 84315517; fax: +86 25 84315517. E-mail address: zq304@mail.njust.edu.cn (Q. Zhong).