

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

On the tangent space of an $n{\rm -surface}$

On the Tangent Space of an n-Surface

Ali Parsian^{*} Tafresh University Maryam Masoumi Tafresh University

Abstract

We are supposed to characterize the tangent space of an n-surface $S = f^{-1}(c)$ for some $f: U \to R, U$ open in \mathbb{R}^{n+1} , and f is a smooth function with the property that $\nabla f(p) \neq 0$ for all $p \in S$, in the case that the whole space admits the general form of the inner product. Finally we introduce a vector field X with integral curve α through p such that the covariant derivative of f with respect to $\dot{\alpha}(0)$ at p, i.e., $\nabla_{\dot{\alpha}(0)}f$ has maximum value.

Keywords: Flow, Inner product, Positive definite, Surface, Vector field. Mathematics Subject Classification [2010]: 37C10, 46C99, 14J29, 43A35.

1 Introduction

The idea of the definition of a regular surface is to introduce a set S, that is, in a certain sense, two dimensional and that also is smooth so that the usual notions of calculus can be extended to it [1, 9]. for example, if $x: U \subseteq R^2 \to S$ be a parameterization of a regular surface S and $q \in U$, then the vector subspace $dx_q R^2 \subseteq R^3$ of dimension 2, coincides with the set of tangent vectors of S at x(q). In the case that $f: U \subseteq R^3 \to R$ is a smooth function and $a \in f(U)$ is a regular point of f, then $S = f^{-1}(a)$ is a regular surface in R^3 . As a result, in this case, the tangent space of S at p consides with $\nabla f(p)^{\perp}$, i.e., the set of vectors at p which are perpendicular with respect to the usual inner product of R^3 to $\nabla f(p)$ [2, 10]. In this note we are supposed to characterized the tangent space T_pS for an n-surface S in the case that R^{n+1} admits a general inner product $\alpha_A(u, v) = uAv^t$, in which A is a symmetric positive definite $(n + 1) \times (n + 1)$ real matrix [3].

2 Preliminaries

Definition 2.1. [1] Let $f: U \to R$ be a smooth function, where $U \subseteq R^{n+1}$ is an open set, let $c \in R$ be such that $f^{-1}(c)$ is non-empty and let $p \in f^{-1}(c)$. A vector is said to be a tangent to the level set $f^{-1}(c)$ if it is the velocity vector of a parameterized curve in R^{n+1} whose image is contained in $f^{-1}(c)$.

Definition 2.2. A parameterized curve is a smooth function $\alpha : I \to \mathbb{R}^{n+1}$ for some open interval I, and an n-surface is a non empty subset $S \subseteq \mathbb{R}^{n+1}$ for some $n \in \mathbb{N}$ of the form $S = f^{-1}(c)$ where $f : U \to \mathbb{R}$, U open in \mathbb{R}^{n+1} , is a smooth function with the property that $\nabla f(p) \neq 0$ for all $p \in S$.

^{*}Speaker