

$46^{\rm th}$ Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Primary decomposition of ideals in MV-algebras

pp.: 1-4

Primary Decomposition of Ideals in MV-algebras

Simin Saidi Goraghani* Farhangian University of Kerman Rajab Ali Borzooei Shahid Beheshti University

Abstract

In this paper, we investigate the ideal theory in MV-algebras and we define the notions of implicative MV-algebras and primary (P-primary) ideals in MV-algebras. Then we show that in implicative MV-algebras, if an ideal has a primary decomposition, then it has a reduced primary decomposition.

Keywords: MV-algebra, radical, primary and P-primary ideals, primary decomposition

Mathematics Subject Classification [2010]: 06F35, 06D99, 08A05

1 Introduction

MV-algebras were defined by C.C. Chang [1,2] as algebras corresponding to the Lukasiewicz infinite valued propositional calculus. These algebras have appeared in the literature under different names and polynomially equivalent presentation: CN-algebras, Wajsberg algebras, bounded commutative BCK-algebras and bricks. The notion of prime ideal in an MV-algebra was introduced by Chang. Since the notion of ideal in MV-algebras is important, for completion of study of ideals in MV-algebras, in this paper, we present definitions of radical of an ideal and primary decomposition of an ideal.

Definition 1.1. [3] An MV-algebra is a structure $M = (M, \oplus, ', 0)$ of type (2, 1, 0) such that:

(MV1) $(M, \oplus, 0)$ is an Abelian monoid,

(MV2) (a')' = a,

 $(MV3) \ 0' \oplus a = 0',$

 $(MV4) (a' \oplus b)' \oplus b = (b' \oplus a)' \oplus a,$

If we define the constant 1=0', then operations \odot and \ominus are defined by $a\odot b=(a'\oplus b')'$, $a\ominus b=a\odot b'$. Also, operations \vee and \wedge on M are defined by $a\vee b=(a\odot b')\oplus b$ and $a\wedge b=a\odot (a'\oplus b)$, for every $a,b\in M$. An ideal of MV-algebra M is a subset I of M, satisfying the following condition: (I1) $0\in I$, (I2) $x\leq y$ and $y\in I$ implies that $x\in I$, (I3) $x\oplus y\in I$, for every $x,y\in I$. We let $\mathcal{I}(M)$ be the set of all ideals of M. A proper ideal P of M is a prime ideal if for $x,y\in M$, $x\wedge y\in P$ implies $x\in P$ or $y\in P$. Equivalently, P is prime if and only if $x\ominus y\in P$ or $y\ominus x\in P$, for every $x,y\in M$.

Note: From now on, in this paper, we let M be an MV-algebra and $\mathcal{PI}(M)$ be the set of all prime ideals of M.

^{*}Speaker