

46<sup>th</sup> Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University



Talk

pp.: 1–4 Composition operators on weak vector valued weighted Dirichlet type spaces

## Composition operators on weak vector valued weighted Dirichlet type spaces

Sepideh Nasresfahani<sup>\*</sup> University of Tabriz

Hamid Vaezi University of Tabriz

## Abstract

In this article we investigate the composition operator  $C_{\phi}$  on weak vector valued weighted Dirichlet type spaces  $w\mathcal{D}_{v}^{p}(X)$  for Banach space X and  $1 \leq p \leq 2$ . This operator is bounded (compact) on those spaces if the related measure  $\mu_{p,v}$  is a (compact) Carleson. Also if  $C_{\phi}$  is bounded (compact) on  $w\mathcal{D}_{v}^{p}(X)$ , then the same behavior holds on  $w \mathcal{D}_v^q(X)$  for  $1 \le q < p$ .

Keywords: Composition operator, Carleson measure, Compact Carleson measure, Weak vector valued weighted Dirichlet type space. Mathematics Subject Classification [2010]: 47B33, 47B38, 31C25

## 1 Introduction

Let X be a complex Banach space and  $\mathbb{D}$  be the open unit disc in the complex plane  $\mathbb{C}$ . The Lebesgue area measure on  $\mathbb{D}$  is defined by  $dA(z) = rdrd\theta = dxdy$ . Denote by H(X) the class of all analytic functions  $f: \mathbb{D} \to X$ . The weight function v is a positive function  $v(r), 0 \leq r < 1$ , which is integrable in (0,1). We extend v to  $\mathbb{D}$  by setting  $v(z) = v(|z|), z \in \mathbb{D}.$ 

For p > 1, the vector valued weighted Bergman space  $A_{\nu}^{p}(X)$  consists of all functions  $f \in H(X)$  for which

$$||f||_{A_v^p(X)}^2 = \int_{\mathbb{D}} ||f(z)||_X^p v(z) dA(z) < \infty.$$

For  $X = \mathbb{C}$  and v = 1, the space  $A^2$  is called the (unweighted) Bergman space. Also for  $X = \mathbb{C}$  and  $v = (1 - |z|^2)^{\alpha}, \alpha > -1$ , we have the standard weighted Bergman space  $A^p_{\alpha}(\mathbb{D})$ . Note that  $A_v^p(X)$  is Banach space for  $p \ge 1$  and Hilbert space for p = 2 (see [5] for the theory of these spaces).

The vector valued weighted Dirichlet type space  $\mathcal{D}_{v}^{p}(X)$  is the space of all f in H(X)such that  $f' \in A_v^p(X)$ , equipped with the norm

$$||f||_{\mathcal{D}_v^p(X)} = ||f(0)|| + ||f'||_{A_v^p(X)}.$$

\*Speaker