

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

On a conjecture of Richard Stanley

On a conjecture of Richard Stanley*

Seyed Amin Seyed Fakhari[†] IPM

Abstract

Let \mathbb{K} be a field and $S = \mathbb{K}[x_1, \ldots, x_n]$ be the polynomial ring in n variables over the field \mathbb{K} . In 1982, Stanley defined what is now called the Stanley depth of a multigraded S-module. He conjectured that Stanley depth is an upper for the depth of the module. This conjecture has been recently disproved by Duval et al., [2]. In this talk, we describe their counterexample. We also present the recent developments in this topic.

Keywords: Stanley depth, Monomial ideal, Cohen-Macaulay simplicial complex, Partitionable simplicial complex Mathematics Subject Classification [2010]: 13C15, 13C13, 05E40

1 Introduction

Let \mathbb{K} be a field and let $S = \mathbb{K}[x_1, \ldots, x_n]$ be the polynomial ring in n variables over \mathbb{K} . Let M be a finitely generated \mathbb{Z}^n -graded S-module. Let $u \in M$ be a homogeneous element and $Z \subseteq \{x_1, \ldots, x_n\}$. The \mathbb{K} -subspace $u\mathbb{K}[Z]$ generated by all elements uv with $v \in \mathbb{K}[Z]$ is called a *Stanley space* of dimension |Z|, if it is a free $\mathbb{K}[Z]$ -module. Here, as usual, |Z|denotes the number of elements of Z. A decomposition \mathcal{D} of M as a finite direct sum of Stanley spaces is called a *Stanley decomposition* of M. The minimum dimension of a Stanley space in \mathcal{D} is called the *Stanley depth* of \mathcal{D} and is denoted by sdepth(\mathcal{D}). The quantity

 $\operatorname{sdepth}(M) := \max \left\{ \operatorname{sdepth}(\mathcal{D}) \mid \mathcal{D} \text{ is a Stanley decomposition of } M \right\}$

is called the *Stanley depth* of M. For a reader friendly introduction to Stanley depth, we refer to [7] and for a nice survey on this topic, we refer to [3].

A \mathbb{Z}^n -graded S-module M is said to satisfies Stanley's inequality if

 $depth(M) \leq sdepth(M).$

In fact, Stanley [11] conjectured that

Stanley depth conjecture. Every \mathbb{Z}^n -graded S-module satisfies Stanley's inequality.

This conjecture has been recently disproved in [2]. In this talk, we describe their counterexample. Time permitting, We will also present the recent developments in this topic.

[†]Speaker

^{*}Will be presented in English