$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University

Some quotient graphs of the power graphs*

Seyed Mostafa Shaker ${ }^{\dagger}$
Yazd University

Mohammad A. Iranmanesh
Yazd University

Daniela Bubboloni
University of Firenze

Abstract

In this paper we define three quotient graphs of the power graphs and study their properties and some relation between them.

Keywords: Power graph, Quotient graph, Quotient power graph, Order graph, Power type graph
Mathematics Subject Classification [2010]: 05C25, 20B30

1 Introduction

Let G be a finite group. The power graph $P(G)$ is the graph with vertex set G and edge set E, where there is an edge $\{x, y\} \in E$ between two distinct vertices $x, y \in G$ if one is a positive power of the other (see [2]). Observed that $P(G)$ is 2 -connected if and only if $P_{0}(G)$, the 1_{G}-cut subgraph of $P(G)$, is connected. Many of results are collected in a survey [1].

In this paper we define quotient power graph, order graph and power type graph of a finite group and study some properties of them, particulary the 2 -connectivity of them. Throughout this paper, we use the standard notations of [4]. Also we denote by $c(\Gamma)$, the number of connected components of the graph Γ.
Definition 1.1. Let $\Gamma=(V, E)$ be a graph and \sim is an equivalence relation on the set V. The quotient graph $\Gamma / \sim=([V],[E])$, of Γ with respect to \sim is a graph with vertex set $[V]=V / \sim$ and there is an edge $\{[x],[y]\} \in[E]$ between $[x],[y] \in[V]$ if $[x] \neq[y]$ and there exist $\bar{x}, \bar{y} \in V$ such that $\bar{x} \sim x, \bar{y} \sim y$ and $\{\bar{x}, \bar{y}\} \in E$.
Definition 1.2. Define the equivalence relation relation \sim on G as follows: For $x, y \in G$, $x \sim y$ if and only if $\langle x\rangle=\langle y\rangle$. Then $[x]=\left\{x^{m}: 1 \leq m \leq o(x),(m, o(x))=1\right\}$. The quotient graph $P(G) / \sim=([G]=G / \sim,[E])$ will be denoted by $\widetilde{P}(G)$ and called the quotient power graph of G. We show that $[x] \neq[y],\{[x],[y]\} \in[E]$ if and only if $\{x, y\} \in E . \widetilde{P}(G)$ is always connected and it is 2 -connected if and only if the 1_{G}-cut subgraph $\widetilde{P}_{0}(G)$, of $\widetilde{P}(G)$, is connected.
Definition 1.3. The order graph of G is the graph $\mathcal{O}(G)$ with vertex set $O(G)=\{m \in \mathbb{N}$: $\exists g \in G$ with $o(g)=m\}$ and edge set $E_{\mathcal{O}(G)}$, where for each $m, n \in O(G),\{m, n\} \in E_{\mathcal{O}(G)}$ if $m \neq n$ and $m \mid n$ or $n \mid m$. The proper order graph $\mathcal{O}_{0}(G)$ is defined as the 1-cut graph of $\mathcal{O}(G)$. Its vertex set is then $O_{0}(G)=O(G) \backslash\{1\}$. We set $c\left(\mathcal{O}_{0}(G)\right)=c_{0}(\mathcal{O}(G)) . \mathcal{O}(G)$ is always connected and it is 2-connected if and only if $\mathcal{O}_{0}(G)$ is connected.

[^0]
[^0]: *Will be presented in English
 ${ }^{\dagger}$ Speaker

