

46th Annual Iranian Mathematics Conference

25-28 August 2015

Some iterative methods for solving an operator equation by using g-frames pp: 1-4

Some iterative methods for solving an operator equation by using g-frames

Hassan Jamali Vali-e-Asr University of Rafsanjan Neda Momeni^{*} Vali-e-Asr University of Rafsanjan

Abstract

This paper proposes some iterative methods for solving an operator equation on a separable Hilbert space H equipped with a g-frame. We design some algorithms based on the Richardson and Chebyshev methods and investigate the convergence and optimality of them.

Keywords: Hilbert space, g-frame, operator equation, iterative method, Chebyshev polynomials.

MSC(2010): Primary: 47J25; Secondary: 46C05.

1 Introduction and preliminaries

G-frames are natural generalization of frames and provide more choices on analyzing functions from frame expansion coefficients. Let J be a countable index set and $\{\Lambda_j\}_{j\in J}$ be a set of operators from a separable Hilbert space H to another separable Hilbert space V_j for $j \in J$. The sequence $\{\Lambda_j\}_{j\in J}$ is called a g – frame for H with respect to $\{V_j\}_{j\in J}$ if there are two positive A and B such that

$$A\|f\|^2 \le \sum_{j \in J} \|\Lambda_j f\|^2 \le B\|f\|^2, \qquad \forall f \in H.$$

A and B is called the lower and upper frame bound, respectively. If A = B then $\{\Lambda_j\}_{j \in J}$ is called a tight g-frame. The g-frame operator S for a g-frame $\{\Lambda_j\}_{j \in J}$, for H with respect to $\{V_j\}_{j \in J}$, is defined by

$$Sf = \sum_{j \in J} \Lambda_j^* \Lambda_j f, \quad \forall f \in H,$$

where Λ_j^* is the adjoint operator of Λ_j . It is easy to check that S is a bounded, invertible and self-adjoint operator and

$$AI \leq S \leq BI \ , \ \frac{1}{B}I \leq S^{-1} \leq \frac{1}{A}I.$$

Writing $\tilde{\Lambda_j} = \Lambda_j S^{-1}$, then for any $f \in H$ we have

$$f = \sum_{j \in J} \Lambda_j^* \tilde{\Lambda_j} f = \sum_{j \in J} \tilde{\Lambda_j^*} \Lambda_j f.$$

*Speaker