

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Steklov problem for a three-dimensional Helmholtz equation in bounded \dots pp.: 1–4

Steklov problem for a three-dimensional Helmholtz equation in bounded domain

Mojtaba Sajjadmanesh^{*} University of Bonab Parisa Vafadar Teacher at Education Department of Bonab

Abstract

This paper is devoted to study of solutions of a Steklov problem for a threedimensional Helmholtz equation with an eigenvalue parameter λ in the non-local boundary conditions on the two-party smooth boundary of a connected bounded domain. The derived necessary conditions construct a system of second kind Fredholm integral equations with multi-dimensional singular integrals. Finally, a new method for regularization of these singularities is represented.

Keywords: Steklov problem, Fundamental solution, Fredholm integral equation **Mathematics Subject Classification [2010]:** 45C99, 45B05

1 Introduction

Our method for investigation of these problems has been used for the first and second order elliptic equations such as Cauchy-Riemann and Laplace equations with non-local boundary conditions in a two-dimensional bounded domain [1], [2] and in this paper, we apply this process for a three-dimensional elliptic equation.

2 Problem statement

Let Ω be a simply connected bounded domain in \mathbb{R}^3 and its boundary Γ is a Lyapunov surface which contains two parts;

 $\Gamma = \Gamma_1 \cup \Gamma_2$, $\Gamma_1 : x_3 = \gamma_1(x')$, $\Gamma_2 : x_3 = \gamma_2(x')$; $(\gamma_2(x') < \gamma_1(x'))$ $x' \in S$, where S is the projection of the domain Ω on the plane Ox_1x_2 . Let's consider Helmholtz equation

$$Lu(x) = (\Delta + k^2)u(x) = 0 \qquad in \quad \Omega \subset \mathbb{R}^3, \tag{1}$$

with non-local boundary conditions:

$$\sum_{k=1}^{3} \left[\alpha_{jk}(x')\frac{\partial u(x)}{\partial x_k}\Big|_{x_3=\gamma_1(x')} + \beta_{jk}(x')\frac{\partial u(x)}{\partial x_k}\Big|_{x_3=\gamma_2(x')}\right] = \lambda u(x',\gamma_j(x')), \ j=1,2$$
(2)

The coefficients $\alpha_{jk}, \beta_{jk}, j = 1, 2, k = 1, 2, 3$ are known C^1 functions and λ is a spectral parameter.

^{*}Speaker