

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

(1)

On some nonlocal elliptic systems with multiple parameters

ON SOME NONLOCAL ELLIPTIC SYSTEMS WITH MULTIPLE PARAMETERS

Zohreh Naghizadeh

Department of Mathematics, Mazandaran University of science and technology, Behshar, Iran.

Eisa fattahi *

Department of Mathematics, Mazandaran University of science and technology, Behshar, Iran.

Abstract

Using variational methods, we study the existence of positive solution for a class of Nonlocal eliptic systems with multiple parameters. The proofs rely essentially on sub and supersoloutions method.

Keywords: Nonlocal elliptic systems, positive solutions, sub and supersolutions method, Variational methods

2010 mathematics subject classificition: 35 D 05, 35 J 60, 35 P 15.

1 Introduction

In this paper we study the existence of positive solutions to the following nonlocal elliptic systems

$$\begin{cases} -M_1\left(\int_{\Omega} |\nabla u|^p \, dx\right) \, div \left(h_1(|\nabla u|^p) \, |\nabla u|^{p-2} \, \nabla u\right) = \alpha_1 a(x) f_1(v) + \beta_1 b(x) g_1(u) \quad x \in \Omega, \\ -M_2\left(\int_{\Omega} |\nabla v|^q \, dx\right) \, div \left(h_2(|\nabla v|^q) \, |\nabla v|^{q-2} \, \nabla v\right) = \alpha_2 c(x) f_2(u) + \beta_2 d(x) g_2(v) \quad x \in \Omega, \\ u = v = 0, \quad x \in \partial\Omega, \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$, 1 < p, q < N, $M_i : \mathbb{R}_0^+ \to \mathbb{R}$. i = 1, 2, are continuous and nondecreasing functions, where $\mathbb{R}_0^+ = [0, +\infty)$, $a, b, c, d \in C(\overline{\Omega})$, and $\alpha_i, \beta_i, i = 1, 2$, are positive parameters We assume throughout this paper the following hypotheses

(H1) $a, b, c, d \in C(\overline{\Omega})$ and $a(x) \ge a_0 > 0$, $b(x) \ge b_0 > 0$, $c(x) \ge c_0 > 0$, $d(x) \ge d_0 > 0$ for all $x \in \Omega$.

(H2) $M_i : \mathbb{R}_0^+ \to \mathbb{R}^+, i = 1, 2$, are two continuous and increasing functions and $0 < m_i \le M_i(t) \le m_{i,\infty}$ for all $t \in \mathbb{R}_0^+$.m

^{*}Speaker