

46th Annual Iranian Mathematics Conference 25-28 August 2015

Yazd University

On the construction of 3-way 3-homogeneous Steiner trades

On the construction of 3-way 3-homogeneous Steiner trades

Hanieh Amjadi * Alzahra University

Nasrin Soltankhah Alzahra University

Abstract

A μ -way d-homogeneous (v, k, t) Steiner trade $T = \{T_1, T_2, ..., T_{\mu}\}$ of volume m consists of μ disjoint collections $T_1, T_2, ..., T_{\mu}$, each of m blocks of size k, such that every t-subset of v-set V occurs at most once in T_1 $(T_j, j \ge 2)$ and each element of V occurs in precisely d blocks of T_1 $(T_j, j \ge 2)$. In this paper we characterize the 3-way 3-homogeneous (v, 3, 2) Steiner trades of volume v.

Keywords: Steiner trade, μ-way trade, Homogeneous trade Mathematics Subject Classification [2010]: 05B05

1 Introduction

Let V be a set of v elements and k and t be two positive integers such that t < k < v. A (v, k, t) trade $T = \{T_1, T_2\}$ of volume m consists of two disjoint collections T_1 and T_2 , each of containing m, k-subsets of V, called blocks, such that every t-subset of V is contained in the same number of blocks in T_1 and T_2 . A (v, k, t) trade is called (v, k, t) Steiner trade if any t-subset of V occurs in at most once in $T_1(T_2)$. In a (v, k, t) trade, both collections of blocks must cover the same set of elements.

The concept of μ -way (v, k, t) trade, was defined recently in [3].

Definition 1.1. A μ -way (v, k, t) trade $T = \{T_1, T_2, ..., T_\mu\}$ of volume m consists of μ disjoint collections $T_1, T_2, ..., T_\mu$, each of m blocks of size k, such that for every t-subset of v-set V the number of blocks containing this t-subset is the same in each T_i (for $1 \le i \le \mu$). In other words any pair of collections $\{T_i, T_j\}, 1 \le i < j \le \mu$ is a (v, k, t) trade of volume m. It is clear by the definition that a trade is a 2-way trade. A μ -way (v, k, t) trade is called μ -way (v, k, t) Steiner trade if any t-subset of found(T) occurs at most once in T_1 $(T_j, j \ge 2)$.

Definition 1.2. A μ -way (v, k, t) trade is called *d*-homogeneous if each element of *V* occurs in precisely *d* blocks of T_1 $(T_j, j \ge 2)$.

Definition 1.3. A trade $T' = \{T'_1, T'_2, ..., T'_{\mu}\}$ is called a subtrade of $T = \{T_1, T_2, ..., T_{\mu}\}$, if $T'_i \subseteq T_i$ for $1 \le i \le \mu$.

^{*}Speaker