

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Poster

The relation between 2-norm spaces and no inverting 2-modular spaces

The relation between 2-norm spaces and no inverting 2-modular spaces

Fatemeh Lael*

Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

Abstract

In this talk, we study 2-norm spaces, and 2-modular spaces. In particular, no inverting 2-modular spaces are studied, and then given a corollary about the relation between two 2-modulars which one of them has β -homogeneity and the other one has some special properties.

Keywords: 2-modular spaces, 2-norm spaces, inverting 2-modular spaces, β -homogeneity Mathematics Subject Classification [2010]: 46A80

1 Introduction

A linear 2-norm space, denoted $(X, \|\cdot, \cdot\|)$, which $\|\cdot, \cdot\| : X^2 \to \mathbb{R}$ is a function, is defined by:

- 1. $||x, y|| = 0 \Leftrightarrow x$ and y are linearly dependent,
- 2. ||x,y|| = ||y,x||,
- 3. || x, y|| = ||x, y||,
- 4. $||x, y + z|| \le ||x, y|| + ||x, z||,$
- 5. ||tx, y|| = |t|||x, y|| for every $x, y \in X$ and every $t \in \mathbb{R}$. The function $||\cdot, \cdot||$ is called a 2-norm on X.

The theory of 2-norm on a linear space was investigated by Gahler in [1].

Definition 1.1. Let X be a real vector space of dimension more than two. A real valued function $\rho(\cdot, \cdot)$ on X^2 satisfying the following properties is called a 2-modular on X:

- 1. $\rho(x, y) = 0$ if and only if x, y are linearly dependent,
- $2. \ \rho(x,y)=\rho(y,x),$
- 3. $\rho(-x, y) = \rho(x, y),$

 $^{^*}Speaker$