

 $46^{\rm th}$ Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

The BSE property of semigroup algebras

The BSE property of semigroup algebras

Zeinab Kamali*

Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Abstract

The concepts of BSE property and BSE algebras were introduced and studied by Takahasi and Hatori in 1990 and later by Kaniuth and Ülger. This abbreviation refers to a famous theorem proved by Bochner and Schoenberg for $L^1(\mathbb{R})$, where \mathbb{R} is the additive group of real numbers, and by Eberlein for $L^1(G)$ of a locally compact abelian group G. In this paper we investigate the BSE property for certain semigroup algebras.

 ${\bf Keywords:}$ Representation algebra, BSE algebra, Foundation semigroup, Reflexive semigroup

Mathematics Subject Classification [2010]: 46Jxx, 22A20

1 Introduction

Let A be a commutative Banach algebra. Denote by $\Delta(A)$ and $\mathcal{M}(A)$ the Gelfand spectrum and the multiplier algebra of A, respectively. A bounded continuous function σ on $\Delta(A)$ is called a *BSE-function* if there exists a constant C > 0 such that for every finite number of $\varphi_1, ..., \varphi_n$ in $\Delta(A)$ and complex numbers $c_1, ..., c_n$, the inequality

$$\left|\sum_{j=1}^{n} c_{j} \sigma(\varphi_{j})\right| \leq C. \left\|\sum_{j=1}^{n} c_{j} \varphi_{j}\right\|_{A}$$

holds. The BSE-norm of σ ($\|\sigma\|_{BSE}$) is defined to be the infimum of all such C. The set of all BSE-functions is denoted by $C_{BSE}(\Delta(A))$. Takahasi and Hatori [9] showed that under the norm $\|.\|_{BSE}$, $C_{BSE}(\Delta(A))$ is a commutative semisimple Banach algebra.

A bounded linear operator on A is called a *multiplier* if it satisfies xT(y) = T(xy) for all $x, y \in A$. The set $\mathcal{M}(A)$ of all multipliers of A is a unital commutative Banach algebra, called the *multiplier algebra* of A.

For each $T \in \mathcal{M}(A)$ there exists a unique continuous function \widehat{T} on $\Delta(A)$ such that $\widehat{T(a)}(\varphi) = \widehat{T}(\varphi)\widehat{a}(\varphi)$ for all $a \in A$ and $\varphi \in \Delta(A)$. See [6] for a proof.

Define

$$\widehat{\mathcal{M}(A)} = \{\widehat{T} : T \in \mathcal{M}(A)\}.$$

A commutative Banach algebra A is called without order if $aA = \{0\}$ implies a = 0 $(a \in A)$.

^{*}Speaker