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Abstract

The concepts of BSE property and BSE algebras were introduced and studied
by Takahasi and Hatori in 1990 and later by Kaniuth and Ülger. This abbreviation
refers to a famous theorem proved by Bochner and Schoenberg for L1(R), where R is
the additive group of real numbers, and by Eberlein for L1(G) of a locally compact
abelian group G. In this paper we investigate the BSE property for certain semigroup
algebras.
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1 Introduction

Let A be a commutative Banach algebra. Denote by ∆(A) and M(A) the Gelfand spec-
trum and the multiplier algebra of A, respectively. A bounded continuous function σ on
∆(A) is called a BSE-function if there exists a constant C > 0 such that for every finite
number of ϕ1, ..., ϕn in ∆(A) and complex numbers c1, ..., cn, the inequality
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holds. The BSE-norm of σ (‖σ‖BSE) is defined to be the infimum of all such C. The set of
all BSE-functions is denoted by CBSE(∆(A)). Takahasi and Hatori [9] showed that under
the norm ‖.‖BSE , CBSE(∆(A)) is a commutative semisimple Banach algebra.

A bounded linear operator on A is called a multiplier if it satisfies xT (y) = T (xy) for
all x, y ∈ A. The setM(A) of all multipliers of A is a unital commutative Banach algebra,
called the multiplier algebra of A.

For each T ∈ M(A) there exists a unique continuous function T̂ on ∆(A) such that

T̂ (a)(ϕ) = T̂ (ϕ)â(ϕ) for all a ∈ A and ϕ ∈ ∆(A). See [6] for a proof.
Define

M̂(A) = {T̂ : T ∈M(A)}.
A commutative Banach algebra A is called without order if aA = {0} implies a = 0

(a ∈ A).
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