

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Properties hypergeometric functions by ruscheweyh derivative

Properties Hypergeometric Functions by Ruscheweyh Derivative*

Roya ghasemkhani[†] University of Jiroft, Jiroft,Iran

Abstract

We study properties of starlike and convexity for the hypergeometric function F(a, b; c; z) defined by Ruscheweyh derivative through putting conditions on a, b, c, to ensure that zF(a, b; c; z) will be in various subclasses of starlike and convex functions.

Keywords: Starlike, Convex, Ruscheweyh Derivative, Hypergeometric functions. Mathematics Subject Classification [2010]: 30C45, 30C55

1 Introduction

let S denote the class of all functions f of the form

$$f(z) = z + \sum_{n=0}^{\infty} a_n z^n \tag{1}$$

that are analytic and univalent in the open unit disk $\Delta = \{z \in C : |z| < 1\}$.

Definition 1.1. A function $f \in S$ is said to be starlike of order $\beta(0 \le \beta < 1)$ if and only if $Re\left(\frac{zf'(z)}{f(z)}\right) > \beta$.

Denote the class of all starlike functions of order β in Δ by $S^{\star}(\beta)$.

Definition 1.2. A function $f \in S$ is said to be convex of order $\beta(0 \le \beta < 1)$ if and only if $Re\left(\frac{1+zf''(z)}{f'(z)}\right) > \beta$.

Denote the class of all convex functions of order β in Δ by $C(\beta)$.

Let (a,n) denote symbol for the generalized factorial,

(a,0) = 1 for $a \neq 0$, (a,n) = a(a+1)(a+2)...(a+n-1) for $n \in N$.

and the Gaussian hypergeometric function given by the analyti function,

^{*}Will be presented in English

[†]Speaker