

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Compact composition operators on real Lipschitz spaces of complex-valued...

Compact composition operators on real Lipschitz spaces of complex-valued bounded functions

Davood Alimohammadi * Arak University Sajedeh Sefidgar Arak University

Abstract

We characterize compact composition operators on real Lipschitz spaces of complexvalued bounded functions on metric spaces, not necessarily compact, with Lipschitz involutions.

 ${\bf Keywords:}\ {\bf Compact}\ {\bf operator},\ {\bf composition}\ {\bf operator},\ {\bf Lipschitz}\ {\bf function},\ {\bf Lipschitz}\ {\bf involution}.$

Mathematics Subject Classification [2010]: 46J10, 47B48.

1 Introduction and Preliminaries

Let X be a nonempty set, $V_{\mathbb{K}}(X)$ be a vector space over \mathbb{K} of \mathbb{K} -valued functions on X and $T: V_{\mathbb{K}}(X) \longrightarrow V_{\mathbb{K}}(X)$ be a linear operator on X. If there exists a self-map $\phi: X \longrightarrow X$ such that $Tf = f \circ \phi$ for all $f \in V_{\mathbb{K}}(X)$, then T is call the composition operator on $V_{\mathbb{K}}(X)$ induded by ϕ .

Let X be a topological space. We denote by $C^b_{\mathbb{K}}(X)$ the set of all K-valued bounded continuous functions on X. Then $C^b_{\mathbb{K}}(X)$ is a unital commutative Banach algebra over K under the pointwise operations and with the uniform norm

$$|| f ||_X = \sup\{|f(x)| : x \in X\} \quad (f \in C^b_{\mathbb{K}}(X)).$$

We denote by $C_{\mathbb{K}}(X)$ the algebra of all \mathbb{K} -valued continuous functions on X. Clearly, $C^b_{\mathbb{K}}(X) = C_{\mathbb{K}}(X)$ whenever X is compact. We write $C^b(X)$ and C(X) instead of $C^b_{\mathbb{C}}(X)$ and $C_{\mathbb{C}}(X)$, respectively.

Let (X, d) and (Y, ρ) be metric spaces. A map $\phi : X \longrightarrow Y$ is called a Lipschitz mapping from (X, d) into (Y, ρ) if there exists a constant $M \ge 0$ such that $\rho(\phi(x), \phi(y)) \le Md(x, y)$ for all $x, y \in X$. A map $\phi : X \longrightarrow Y$ is called supercontractive from (X, d) into (Y, ρ) if

$$\lim_{d(x,y)\to 0} \frac{\rho(\phi(x),\phi(y))}{d(x,y)} = 0.$$

Let (X, d) be a metric space. A function $f : X \longrightarrow \mathbb{K}$ is called a \mathbb{K} -valued Lipschitz function on (X, d) if f is a Lipschitz mapping from (X, d) into the Euclidean metric space

^{*}Speaker