$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University

A note on the transitive groupoid spaces

Habib Amiri*
University of Zanjan

Abstract

If a group G acts on a set X and H is a subgroup of G, the Frattini argument shows that H acts transitively on X if and only if G acts transitively on X and $G=H S t a b_{x}$ for some $x \in X$, where $S t a b_{x}$ is the stabilizer of x in G. There is another useful result in group action which indicates that the action of G on a set X is doubly transitive if and only if, for each $x \in X$, the group Stab $_{x}$ acts transitively on $X \backslash\{x\}$, where the cardinal number of X is more than two. In this paper if a groupoid acts on a set X, then by using sections, special subsets of X, instead of the points of X in the group case, we will extend these results to the groupoid case.

Keywords: Groupoid; Groupoid space; Frattini argumen
Mathematics Subject Classification [2010]: 18B40, 16W22

1 Introduction

When a group G acts on a set X, the point stabilizer of $x \in X$ is denoted by Stab_{x} and is a subgroup of G. In the case where G acts transitively on X, then the stabilizers $\operatorname{Stab}_{x}(x \in X)$ form a single conjugacy class of subgroups of G. The Frattini argument indicate that a subgroup H of G acts transitively on X if and only if $G=H S t a b_{x}$ for some $x \in X$ [1]. The action of the group G on the set X is naturally extend to an action of G on the cartesian product $X \times X$ by $g .(x, y)=(g \cdot x, g . y)$. The action of G on X is called doubly transitive, if for two pairs $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ in $X \times X$ with $x_{1} \neq x_{2}, y_{1} \neq y_{2}$, there exists $g \in G$ with $g \cdot x_{1}=y_{1}, g \cdot x_{2}=y_{2}$. The action of G on X is doubly transitive if and only if, for each $x \in X$, the group Stab $_{x}$ acts transitively on $X \backslash\{x\}$ [1].

A groupoid (see definition 1.1 of [4]) is a set G endowed with a product map $(x, y) \mapsto$ $x y: G^{2} \rightarrow G$ where G^{2} as a subset of $G \times G$ is called the set of composable pairs, and an inverse map $x \mapsto x^{-1}: G \rightarrow G$ such that the following relations are satisfied:

1. For every $x \in G,\left(x^{-1}\right)^{-1}=x$.
2. If $(x, y),(y, z) \in G^{2}$, then $(x y, z),(x, y z) \in G^{2}$ and $(x y) z=x(y z)$.
3. For all $x \in G,\left(x^{-1}, x\right) \in G^{2}$ and if $(x, y) \in G^{2}$, then $x^{-1}(x y)=y$. Also for all $x \in G,\left(x, x^{-1}\right) \in G^{2}$ and if $(z, x) \in G^{2}$, then $(z x) x^{-1}=z$.
[^0]
[^0]: *Speaker

