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a b s t r a c t

We show that the set of fixed points of the average of two resolvents can be found from
the set of fixed points for compositions of two resolvents associated with scaledmonotone
operators. Recently, the proximal average has attracted considerable attention in convex
analysis. Our results imply that theminimizers of proximal-average functions can be found
from the set of fixed points for compositions of two proximal mappings associated with
scaled convex functions.When both convex functions in the proximal average are indicator
functions of convex sets, least squares solutions can be completely recovered from the
limiting cycles given by compositions of two projection mappings. This provides a partial
answer to a question posed by C. Byrne. A novelty of our approach is to use the notion of
resolvent average and proximal average.
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1. Introduction

Throughout,H is a real Hilbert spacewith inner product ⟨·, ·⟩ and induced norm ‖·‖, andΓ (H) is the set of proper lower
semicontinuous convex functions on H . Let A : H ⇒ H be a set-valued operator with graph gr A :=


(x, u) ∈ H × H |

u ∈ Ax

. The set-valued inverse A−1 of A has graph


(u, x) ∈ H | u ∈ Ax


, and the resolvent of A is JA := (A + Id)−1 where

Id : H → H denotes the identity mapping. The operator A is monotone if ⟨x − y, u − v⟩ ≥ 0 for all (x, u), (y, v) ∈ gr A; A
is maximal monotone if A is monotone and no proper enlargement of gr A is monotone.
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