

Contents lists available at ScienceDirect

Nonlinear Analysis

On the Dirichlet problem for the n, α -Laplacian with the nonlinearity in the critical growth range

Robert Černý ^a, Petr Gurka ^b, Stanislav Hencl ^{a,*}

ARTICLE INFO

Article history: Received 18 September 2010 Accepted 6 May 2011 Communicated by Enzo Mitidieri

MSC: 46E35 46E30 35A15

Keywords: Orlicz–Sobolev spaces Mountain Pass Theorem Palais–Smale sequence

ABSTRACT

Let $\Omega \subset \mathbb{R}^n$, $n \ge 2$, be a bounded domain. Applying the Mountain Pass Theorem we prove the existence of a non-trivial weak solution to the Dirichlet problem

$$-\operatorname{div}\!\left(\Phi'(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right) = f(x,u) \quad \text{in } \Omega,$$

where u is in the Orlicz–Sobolev space $W_0^1L^{\Phi}(\Omega)$ with a Young function of the type $\Phi(t)\approx t^n\log^{\alpha}(t), \alpha< n-1,$ and $|f(x,t)|\approx \exp(\beta|t|^{\frac{n}{n-1-\alpha}}), \beta>0.$

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout the paper, Ω is supposed to be a bounded domain in \mathbb{R}^n , $n \geq 2$, and ω_{n-1} denotes the (n-1)-dimensional measure of the surface of the unit sphere.

It is a well-known problem to find solutions to the Laplace equation

$$u \in W_0^{1,2}(\Omega)$$
 and $-\Delta u = f(x, u)$ in Ω . (1.1)

When $n \geq 3$ and f satisfies $\lim_{t \to \infty} \frac{f(x,t)}{t^q} = 0$ uniformly on Ω with $q < \frac{n+2}{n-2}$, then there are many results using the compact embedding of the space $W_0^{1,2}(\Omega)$ into $L^r(\Omega)$ with $r \in [1, \frac{2n}{n-2})$ (see a review article by Lions [1] and the references given therein). Problem (1.1) under condition $\lim_{t \to \infty} f(x,t) t^{-\frac{n+2}{n-2}} = 0$ becomes much more difficult thanks to the fact that the embedding of the Sobolev space $W_0^{1,2}(\Omega)$ into $L^{\frac{2n}{n-2}}(\Omega)$ is no longer compact. This difficulty was overcome by Brezis and Nirenberg [2] using the Mountain Pass Theorem by Ambrosetti and Rabinowitz [3].

When $n \geq 2$, we not only have the Sobolev embedding of $W_0^{1,n}(\Omega)$ into $L^r(\Omega)$ for any $r \in [0,\infty)$ but also have the Trudinger embedding [4] into the Orlicz space $\exp L^{\frac{n}{n-1}}(\Omega)$. In particular, there is the so-called Moser–Trudinger inequality by Moser [5]

$$\sup_{\|u\|_{W_0^{1,n}(\Omega)} \le 1} \int_{\Omega} \exp(K|u|^{\frac{n}{n-1}}) \le C(n, \mathcal{L}_n(\Omega)) \quad \text{if and only if} \quad K \le n\omega_{n-1}^{\frac{1}{n-1}}.$$

^a Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 00 Prague 8, Czech Republic

^b Department of Mathematics, Czech University of Life Sciences Prague, 165 21 Prague 6, Czech Republic

^{*} Corresponding author. Tel.: +420 776586875.

E-mail addresses: rcerny@karlin.mff.cuni.cz (R. Černý), gurka@tf.czu.cz (P. Gurka), hencl@karlin.mff.cuni.cz (S. Hencl).