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a b s t r a c t

In the general setting of a planar first order system

u′
= G(t, u), u ∈ R2, (0.1)

with G : [0, T ] × R2
→ R2, we study the relationships between some classical

nonresonance conditions (including the Landesman–Lazer one) — at infinity and, in the
unforced case, i.e. G(t, 0) ≡ 0, at zero — and the rotation numbers of ‘‘large’’ and
‘‘small’’ solutions of (0.1), respectively. Such estimates are then used to establish, via the
Poincaré–Birkhoff fixed point theorem, new multiplicity results for T -periodic solutions
of unforced planar Hamiltonian systems Ju′

= ∇uH(t, u) and unforced undamped scalar
second order equations x′′

+ g(t, x) = 0. In particular, by means of the Landesman–Lazer
condition, we obtain sharp conclusions when the system is resonant at infinity.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of the existence of T -periodic solutions for the scalar second order equation

x′′
+ g(t, x) = 0, (1.1)

with g : [0, T ] × R → R, is a central topic in the theory of nonlinear ordinary differential equations. Focusing on the case
when g(t, x) has an at most linear growth in its second variable, it is well known that such a problem is strictly related to
the interaction of g(t,x)

x (for |x| large) with the spectrum of the linear problem, defined as the set Σ := {λj}j∈N, where

λj :=


2π j
T

2

.

In this context, several situations can occur. We recall the following three sufficient conditions of existence, which will be
employed later on:

(a) the nonresonance condition given in [1], which generalizes the classical nonresonance assumption

λj < lim inf
|x|→+∞

g(t, x)
x

≤ lim sup
|x|→+∞

g(t, x)
x

< λj+1,
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