ELSEVIER

Contents lists available at SciVerse ScienceDirect

Applied Catalysis A: General

journal homepage: www.elsevier.com/locate/apcata

Ubiquitous aluminum alkyls and alkoxides as effective catalysts for glucose to HMF conversion in ionic liquids

Dajiang (DJ) Liu^{a,b}, Eugene Y.-X. Chen^{a,*}

- ^a Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- ^b Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA

ARTICLE INFO

Article history:
Received 5 March 2012
Received in revised form 21 May 2012
Accepted 25 May 2012
Available online 4 June 2012

Keywords: Biomass Glucose Ionic liquids HMF Aluminum catalysts

ABSTRACT

Metal halides (chlorides in particular) are employed almost exclusively as Lewis acid catalysts for the homogeneous conversion of glucose (or cellulose) to HMF (5-hydroxymethylfurfural) in ionic liquids (ILs), with $CrCl_2$ being arguably the most effective benchmark catalyst. Reported herein is a discovery that ubiquitous aluminum alkyl or alkoxy compounds are very effective Lewis acid catalysts for the glucose-to-HMF conversion in ILs. Under the current reaction conditions (1-ethyl-3-methylimidazolium chloride [EMIM]Cl, $120\,^{\circ}C$, $6\,h$), simple trialkyl and trialkoxy aluminum species such as $AlEt_3$ and $Al(O^iPr)_3$, which are much cheaper than $CrCl_2$ (by a factor of $5\,$ for $AlEt_3$ or $180\,$ for $Al(O^iPr)_3$), are at least as effective as $CrCl_2$ to catalyze this conversion process. The molecular structure of $[EMIM]^+[ClAlMe(BHT)_2]^-$, formed upon mixing the alkylaryloxy aluminum $MeAl(BHT)_2$ and the $IL\,[EMIM]Cl$, has been determined by X-ray diffraction; the structure simulates that of the metallate $[EMIM]^+[CrCl_3]^-$, the proposed active species responsible for the effective glucose to HMF conversion by $CrCl_2$ in [EMIM]Cl. Another significant finding is that a gradual substitution of the chloride ligand on aluminum by the alkyl ligand brings about a drastic enhancement on the HMF yield, from 1.6% by $AlCl_3$ to 7.6% by $MeAlCl_2$ to 17% by Et_2AlCl and to 51% by $AlEt_3$, thus showing approximately an overall 32-fold HMF yield enhancement going from $AlCl_3$ to $AlEt_3$.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Research directed at developing effective conversion of nonfood plant biomass into fuels and/or chemicals has intensified in recent years [1], as this process, once becoming technologically and economically competitive as compared to oil refinery, can provide humanity with a sustainable source of fuels and chemicals. The majority (60–90 wt.%) of plant biomass is the biopolymer carbohydrates (sugars) stored in the form of cellulose and hemicelluloses. The biomass-derived sugars can be converted into fuels and value-added chemicals by liquid-phase catalytic processing [2]. Alternatively, cellulosic materials can be directly converted into the biomass platform chemical 5-hydroxymethylfurfural (HMF) [3], a versatile intermediate for top-value-added chemicals and fuels (e.g., 2,5-dimethylfuran, a biofuel with a 40% higher energy density than ethanol [4]). As environmentally benign alternatives to volatile organic solvents, recyclable ionic liquids (ILs) have attracted rapidly growing interest [5], particularly in the pursuit of renewable energy and chemicals from lignocellulosic biomass [6]. These advances were made possible by the discovery of Rogers and co-workers [7] that showed a class of water-stable and -miscible ILs, 1-alkyl (R)-3-methylimidazolium chloride salts [8], [RMIM]Cl, can solubilize cellulose in appreciable wt.% by disrupting the extensive H-bonding network present in cellulose through H-bonding of the anion of ILs with the hydroxyl groups of cellulose [9]. Excitingly, IL solvents enabled homogenous hydrolysis of cellulose to water-soluble reducing sugars in high to quantitative conversion, either catalyzed by mineral or organic acids [10], or even in the absence of any additional catalyst (i.e., with IL–H₂O mixtures) [11].

Through acid-catalyzed dehydration, fructose can be readily converted to HMF typically in high yields [12]. However, glucose, a more desirable feedstock derived from non-food, cellulosic biomass, has been showed to be resistant to its conversion into HMF, thus achieving typically low yields (\sim 10%) by a variety of catalyst systems, such as lanthanide halides LnCl₃ (Ln = La³⁺ – Lu³⁺) in water or organic solvents [13]; the use of AlCl₃ in water or organic solvents assisted by microwave radiation improves the HMF yield [14]. Seminar work of Zhang et al. revealed that glucose can also be converted into HMF in good yields when using CrCl₂ as catalyst in ILs such as [EMIM]Cl [15]. Thus, the CrCl₂-catalyzed process in [EMIM]Cl at 100 °C for 3 h achieved a HMF yield of 68–70%; the process was proposed to proceed via in situ glucose-to-fructose isomerization catalyzed by the anion CrCl₃⁻ in the resulting

^{*} Corresponding author at: Department of Chemistry, Colorado State University, Fort Collins, CO 80523 1872, USA. Tel.: +1 970 491 5609; fax: +1 970 491 1801. E-mail address: eugene.chen@colostate.edu (E.Y.-X. Chen).