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a b s t r a c t

The work of Hundal [H. Hundal, An alternating projection that does not converge in norm,
Nonlinear Anal. 57 (1) (2004) 35–61] has revealed that the sequence generated by the
method of alternating projections converges weakly, but not strongly in general. In this
paper, we present several algorithms based on alternating resolvents of two maximal
monotone operators, A and B, that can be used to approximate common zeros of A and B. In
particular, we prove that the sequences generated by our algorithms converge strongly. A
particular case of such algorithms enables one to approximate minimum values of certain
convex functionals.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let H be a real Hilbert space with scalar product ⟨·, ·⟩ and induced norm ‖ · ‖. An operator A : D(A) ⊂ H → 2H is called
monotone if it satisfies the monotonicity property

⟨x − x′, y − y′
⟩ ≥ 0, ∀(x, y), (x′, y′) ∈ graph(A).

Equivalently, A is monotone if its graph is a monotone subset of the product space H × H . If there is no monotone operator
A′ whose graph properly contains the graph of A, then A is called a maximal monotone operator. For a maximal monotone
operator A, the resolvent of A, defined by JAβ := (I + βA)−1, is well defined on the whole space H and is single valued for
every β > 0. Most importantly, JAβ is nonexpansive; that is, for every x, y ∈ H , the inequality ‖JAβx − JAβy‖ ≤ ‖x − y‖ holds.
See, for example, [1] for details.

We will use the following notations: given a sequence (xn)n∈N0 , N0 = {0, 1, . . .}, (or (xn) in short), and a point x ∈ H ,
xn → x (respectively, xn ⇀ x) means that (xn) converges strongly (respectively, weakly) to x. The weak ω-limit set of (xn)
will be denoted by ωw((xn)). This set is defined as follows:

ωw((xn)) =

x ∈ H | xnk ⇀ x for some subsequence (xnk)k∈N0 of (xn)n∈N0


.

The class of proper and convex functions from H into (−∞, ∞] will be denoted by Γ (H). For any ϕ ∈ Γ (H), the
subdifferential (operator) ∂ϕ : H → H is defined by

∂ϕ(x) = {w ∈ H | ϕ(x) − ϕ(v) ≤ ⟨w, x − v⟩ for all v ∈ H} .
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