Three positive solutions for a semilinear elliptic equation in \mathbb{R}^{N} involving sign-changing weight

Tsung-fang Wu*
Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

ARTICLE INFO

Article history:

Received 26 May 2009
Accepted 25 March 2011
Communicated by Enzo Mitidieri

Keywords:

Lusternik-Schnirelmann category
Fibering map
Multiple positive solutions
Sign-changing weight

Abstract

In this paper, we study the decomposition of the Nehari manifold via the combination of concave and convex nonlinearities. Furthermore, we use this result and the Lusternik-Schnirelmann category to prove that a semilinear elliptic equation in \mathbb{R}^{N} involving sign-changing weight function has at least three positive solutions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we prove the multiplicity results of positive solutions of the following semilinear elliptic problem:

$$
\left\{\begin{array}{l}
-\Delta u+u=f_{\lambda}(x)|u|^{q-2} u+|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}, \\
u \in H^{1}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

where $N \geq 3,1<q<\min \left\{2,\left(1+\frac{4}{N}\right)\right\}, 2<p<\frac{2 N}{N-2}, \lambda>0, f_{\lambda}=\lambda f_{+}(x)-f_{-}(x)$ and the functions $f_{ \pm}$satisfy the following conditions:
(D1) there exists a bounded smooth domain $\Theta \subset \mathbb{R}^{N}$ such that for all $x \in \Theta, f_{-}(x) \geq 0, f_{+}(x)=0$ and for all $x \in \mathbb{R}^{N} \backslash \bar{\Theta}, f_{-}(x)=0, f_{+}(x) \geq 0 ;$
(D2) $f_{+}(x) \in\left[L^{q^{*}}\left(\mathbb{R}^{N}\right) \cap L^{\widetilde{q}}\left(\mathbb{R}^{N}\right)\right] \backslash\{0\}$, where $q^{*}=\frac{2}{2-q}$ and $\widetilde{q}=\frac{2 \beta}{2-(q-1) \beta}\left(\beta=\frac{N}{2}\right.$, if $N=3$ and $\frac{N}{2}<\beta<\frac{2}{q-1}$, if $\left.N \geq 4\right)$;
(D3) $f_{-}(x) \in L^{\bar{q}}\left(\mathbb{R}^{N}\right) \backslash\{0\}$, where $\bar{q}=\max \left\{q^{*}, \widetilde{q}\right\}$.
Associated with Eq. $\left(E_{f_{\lambda}}\right)$, we consider the energy functional $J_{f_{\lambda}}$ in $H^{1}\left(\mathbb{R}^{N}\right)$

$$
J_{f_{\lambda}}(u)=\frac{1}{2}\|u\|_{H^{1}}^{2}-\frac{1}{q} \int_{\mathbb{R}^{N}} f_{\lambda}(x)|u|^{q} \mathrm{~d} x-\frac{1}{p} \int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x
$$

where $\|u\|_{H^{1}}=\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}+u^{2} \mathrm{~d} x\right)^{1 / 2}$ is the standard norm in $H^{1}\left(\mathbb{R}^{N}\right)$. It is well known that the solutions of Eq. ($E_{f_{\lambda}}$) are the critical points of the energy functional $J_{f_{\lambda}}$ in $H^{1}\left(\mathbb{R}^{N}\right)$ (see [1]).

[^0]
[^0]: * Tel.: +88675919519; fax: +88675919344.

 E-mail address: tfwu@nuk.edu.tw.

