Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

On boundary blow-up solutions to equations involving the ∞ -Laplacian

Ahmed Mohammed^{a,*}, Seid Mohammed^b

^a Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA
^b Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia

Department of Mathematics, Addis Ababa Oniversity, Addis Ababa, Eth

ARTICLE INFO

Article history: Received 3 February 2011 Accepted 3 April 2011 Communicated by S. Ahmad

Keywords: Infinity Laplacian Boundary blow-up Boundary asymptotic estimate Uniqueness Comparison principle

ABSTRACT

Given a non-negative, continuous function h on $\overline{\Omega} \times \mathbb{R}$ such that h(x, 0) = 0 for all $x \in \Omega$, h(x, t) > 0 in $\Omega \times (0, \infty)$, and h(x, t) non-decreasing in t for each $x \in \Omega$, we study the boundary value problem

 $\begin{cases} \Delta_{\infty} u = h(x, u) & \text{ in } \Omega \\ u = \infty & \text{ on } \partial \Omega \end{cases}$

where $\Omega \subseteq \mathbb{R}^N$, $N \ge 2$ is a bounded domain and Δ_∞ is the ∞ -Laplacian, a degenerate elliptic operator. We provide sufficient conditions on h under which the above problem admits a solution, or fails to admit a solution. A necessary and sufficient condition on f is given for a solution to exist in the special case when h(x, t) = b(x)f(t). In the latter case an asymptotic boundary behavior of solutions will be studied. As an application a sufficient condition on f will be given to ensure the uniqueness of solutions in case b is a constant. \mathbb{O} 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^N$, $N \ge 2$ be a bounded domain. In this paper we study the problem

$$\begin{cases} \Delta_{\infty} u = h(x, u) & \text{in } \Omega\\ u = \infty & \text{on } \partial \Omega. \end{cases}$$
(1.1)

The boundary condition $u = \infty$ on $\partial \Omega$ is to be understood in the following sense.

 $\lim u(x) = \infty \quad \text{for each } z \in \partial \Omega.$

Here Δ_{∞} is the degenerate elliptic operator given by

$$\Delta_{\infty} u = \sum_{i,j=1}^{N} u_{x_i} u_{x_i x_j} u_{x_j}$$

This operator, called the ∞ -Laplacian, first appeared in the work of Aronsson [1] in connection with the geometric problem of finding the so-called absolutely minimizing functions in Ω . We refer the reader to the papers [2–4] for an in-depth discussion of the problem and other many interesting related properties.

The ∞ -Laplacian has been the subject of extensive investigation since the fundamental work of Jensen [5] in which he established that solutions of $\Delta_{\infty} u = 0$ in Ω characterize absolutely minimizing functions in Ω . Since absolutely minimizing functions are not necessarily smooth, the equation $\Delta_{\infty} u = 0$ in Ω is understood in a weak sense to be described in Section 2.

* Corresponding author. Tel.: +1 765 285 8813; fax: +1 765 285 1721.

E-mail addresses: amohammed@bsu.edu (A. Mohammed), mt@yahoo.com (S. Mohammed).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.04.022