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a b s t r a c t

It is shown that if µ is not an eigenvalue of an associated p-Laplacian, then the equation

−div(ϕ(x,∇u)) = µ |u|p−2 u + f (λ, x, u,∇u)

with nonhomogeneous ϕ (which is assumed to behave asymptotically as the function
generating the associated p-Laplacian) has a global branch of solutions (λ, u). Also the case
of modified p-Laplace operators and generalizations thereof are discussed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Using abstract nonlinear spectral theory and the theory of essential (0-epi) maps in the spirit of [1–3], the existence of a
global branch of solutions (λ, u) for the boundary value problem

−∆pu = µ |u|p−2 u + f (λ, x, u,∇u) onΩ ,
u = 0 on ∂Ω (1.1)

was obtained in [4] when 1 < p < ∞ (for generalizations to unbounded domains andwith weight functions, see also [5,6]).
Here, we denote by∆p either the p-Laplacian

∆pu := div(|∇u|p−2
∇u) (1.2)

or the modified p-Laplacian

∆pu :=

n−
k=1

∂

∂xk

 ∂u∂xk
p−2

∂u
∂xk


. (1.3)
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