Contents lists available at SciVerse ScienceDirect

Applied Catalysis A: General

journal homepage: www.elsevier.com/locate/apcata

Pulsed laser deposition of Co₃O₄ nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue

T. Warang*, N. Patel, A. Santini, N. Bazzanella, A. Kale, A. Miotello

Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, I-38123 Povo, Trento, Italy

ARTICLE INFO

Article history: Received 13 December 2011 Received in revised form 9 February 2012 Accepted 10 February 2012 Available online 27 February 2012

Keywords: Pulsed laser deposition Co₃O₄ nanoparticles Photocatalytic degradation Water purification

ABSTRACT

Cobalt oxide (Co₃O₄) nanoparticles (NPs) assembled coating have been prepared by reactive pulsed laser deposition of Co, in O₂ atmosphere, on Si or glass substrate ranging from room temperature to 250 °C. The NPs, having narrow size distribution with average values of around 25–50 nm, were characterized by Raman, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The Co₃O₄ NPs synthesized at 150 °C comprise a mixed amorphous–nanocrystalline phase (that is unique property for catalysis) while complete crystallization of Co₃O₄ occurs at 250 °C with formation of spinel structure. Photocatalytic properties of Co₃O₄ NPs assembled coating for degradation of methylene blue solution under visible light irradiation are reported. The effect of H₂O₂ concentration and effect of pH variation on dye degradation rate has been reported. The reusability of the Co₃O₄ NPs assembled thin coating catalyst was further evaluated in several recycling runs. The activity of heterogeneous Co₃O₄ NPs and the methylene blue solution.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Textile dyes, releasing aromatic amines and potential carcinogens, are frequently found in trace quantities in industrial waste water. The increasing environmental concerns make it necessary to implement certain steps towards eliminating dyes from wastewater before discharging in the mainstreams. Advanced oxidation processes (AOP) involving active species like hydroxyl radical (OH•) with very high oxidation potential resulted to be most efficient route for dye degradation [1]. This radical generation occurs by processes such as direct photolysis of H₂O₂, photo-excitation of TiO₂, and Photo-Fenton reaction in presence of H₂O₂ and metal cations [2]. However, the first two methods require high intensity UV light while the Photo-Fenton reaction proceeds by absorption of visible light hence showing significantly higher efficiency.

Photo-Fenton reaction is very complex type of photocatalytic reaction which employs a mixture of H_2O_2 and ferrous ions (Fe²⁺ and Fe³⁺) in acidic medium to generate the hydroxyl radicals in presence of light [3]. Due to the requirement of acidic medium with

low pH (pH 3) the process results in large sludge residues. Other transition metal ions like Co²⁺ ions are found to be active even in neutral pH for generating hydroxyl radicals via Photo-Fenton process and this is a clear advantage over Fe²⁺ [4]. However, this kind of homogenous reaction produces additional impurity in the water by the dissolved metal ions (Fe²⁺ and Co²⁺) thus avoiding its use on the commercial level. Hence the heterogeneous cobalt oxide catalyst has attracted great attention to generate hydroxyl radicals. The catalyst like Co₃O₄ has been considered for photodegradation of organic dyes in waste water treatment application because of its thermodynamic stability and desired catalyst properties [5–7]. Co₃O₄ nanorods prepared by complex pyrogenation method showed photocatalytic degradation of the three different dyes: reactive black, reactive turquoise, and reactive blue [8]. Small nanosized clusters of Co₃O₄ coated on PTFE (polytetrafluoroethylene) flexible coating are reported as novel and efficient supported photocatalysts in the fast discoloration of the azo-dye Orange II under simulated solar radiation in the presence of oxone [9].

Nano-structures of Co_3O_4 (nanoparticles, nanorods, nanowires, etc.) exhibit exceptional activity and selectivity in catalytic processes as compared to the corresponding bulk counterpart, especially because of their large surface-to-volume atomic ratio, size- and shape-dependent properties, and high concentration of under-coordinated active surface sites [10,11]. In the past, Co_3O_4 nanoparticles (NPs) have been synthesized primarily in powder

^{*} Corresponding author at: Lab IdEA, Department of Physics, Università degli Studi di Trento, Via Sommarive 14, I-38123, Povo (Trento), Italy. Tel.: +39 0461 28 1647; fax: +39 0461 28 1696.

E-mail address: warang@science.unitn.it (T. Warang).

⁰⁹²⁶⁻⁸⁶⁰X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.apcata.2012.02.037