A variational semilinear singular system

Lucio Boccardo*, Luigi Orsina

Dipartimento di Matematica, "Sapienza" Università di Roma, P.le A. Moro 2, 00185 Roma, Italy

ARTICLE INFO

Article history:

Received 14 December 2010
Accepted 17 January 2011

Keywords:

Calculus of variations
Semilinear systems
Singular systems

A B S TRACT

In this paper we study existence of solutions for the following variational semilinear singular system:

$$
\begin{cases}u>0 & \text { in } \Omega, u \in H_{0}^{1}(\Omega):-\operatorname{div}(A(x) \nabla u)=\theta \frac{z^{p}}{u^{1-\theta}}, \\ z>0 & \text { in } \Omega, z \in H_{0}^{1}(\Omega):-\operatorname{div}(M(x) \nabla z)=p u^{\theta} z^{p-1},\end{cases}
$$

where Ω is a bounded open subset of $\mathbb{R}^{N}, N>2, A$ and M are bounded measurable elliptic matrices, and p and θ are such that

$$
0<\theta<1, \quad p>0, \quad \theta+p<2^{*}
$$

© 2011 Published by Elsevier Ltd

1. Introduction and statement of results

In this paper we study existence of solutions for the system

$$
\begin{cases}u>0 & \text { in } \Omega, u \in H_{0}^{1}(\Omega):-\operatorname{div}(A(x) \nabla u)=\theta \frac{z^{p}}{u^{1-\theta}} \tag{1.1}\\ z>0 & \text { in } \Omega, z \in H_{0}^{1}(\Omega):-\operatorname{div}(M(x) \nabla z)=p z^{p-1} u^{\theta} .\end{cases}
$$

Here Ω is a bounded, open subset of $\mathbb{R}^{N}, N>2, p$ and θ are positive real numbers such that

$$
\begin{equation*}
0<\theta<1<p \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
p+\theta<2^{*} \tag{1.3}
\end{equation*}
$$

and A and M are symmetric and measurable matrices such that

$$
\begin{equation*}
\alpha|\xi|^{2} \leq A(x) \xi \xi \leq \beta|\xi|^{2}, \quad \alpha|\xi|^{2} \leq M(x) \xi \xi \leq \beta|\xi|^{2} \tag{1.4}
\end{equation*}
$$

with $0<\alpha \leq \beta$, for almost every $x \in \Omega$, and for every $\xi \in \mathbb{R}^{N}$.
The main difficulty in the study of system (1.1) lies in the first equation, where we have u in the denominator of the right-hand side $\frac{z^{p}}{u^{1-\theta}}$ and, at the same time, the boundary condition $u=0$.

Our approach is a variational one, so that we define, for v and w in $H_{0}^{1}(\Omega)$, the functional

$$
\begin{equation*}
J(v, w)=\frac{1}{2} \int_{\Omega} A(x) \nabla v \nabla v+\frac{1}{2} \int_{\Omega} M(x) \nabla w \nabla w-\int_{\Omega} v_{+}^{\theta} w_{+}^{p}, \tag{1.5}
\end{equation*}
$$

[^0]
[^0]: * Corresponding author.

 E-mail addresses: boccardo@mat.uniroma1.it (L. Boccardo), orsina@mat.uniroma1.it (L. Orsina).

