Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

A variational semilinear singular system

Lucio Boccardo*, Luigi Orsina

Dipartimento di Matematica, "Sapienza" Università di Roma, P.le A. Moro 2, 00185 Roma, Italy

ARTICLE INFO

Received 14 December 2010

Accepted 17 January 2011

Semilinear systems Singular systems

Article history:

Keywords: Calculus of variations

ABSTRACT

In this paper we study existence of solutions for the following variational semilinear singular system:

$$u > 0 \quad \text{in } \Omega, \ u \in H_0^1(\Omega) : -\operatorname{div}(A(x)\nabla u) = \theta \frac{z^{\mu}}{u^{1-\theta}},$$

$$z > 0 \quad \text{in } \Omega, \ z \in H_0^1(\Omega) : -\operatorname{div}(M(x)\nabla z) = p u^{\theta} z^{p-1}.$$

where Ω is a bounded open subset of \mathbb{R}^N , N > 2, A and M are bounded measurable elliptic matrices, and p and θ are such that

 $0 < \theta < 1, p > 0, \theta + p < 2^*.$

© 2011 Published by Elsevier Ltd

1. Introduction and statement of results

In this paper we study existence of solutions for the system

$$\begin{cases} u > 0 & \text{in } \Omega, \ u \in H_0^1(\Omega) : -\operatorname{div}(A(x)\nabla u) = \theta \frac{z^p}{u^{1-\theta}}, \\ z > 0 & \text{in } \Omega, \ z \in H_0^1(\Omega) : -\operatorname{div}(M(x)\nabla z) = pz^{p-1}u^{\theta}. \end{cases}$$
(1.1)

Here Ω is a bounded, open subset of \mathbb{R}^N , N > 2, p and θ are positive real numbers such that

$$0 < \theta < 1 < p, \tag{1.2}$$

and

$$p + \theta < 2^*$$
, (1)

and A and M are symmetric and measurable matrices such that

$$\alpha |\xi|^2 \le A(x)\xi\xi \le \beta |\xi|^2, \qquad \alpha |\xi|^2 \le M(x)\xi\xi \le \beta |\xi|^2, \tag{1.4}$$

with $0 < \alpha \leq \beta$, for almost every $x \in \Omega$, and for every $\xi \in \mathbb{R}^N$.

The main difficulty in the study of system (1.1) lies in the first equation, where we have u in the denominator of the right-hand side $\frac{z^p}{u^{1-\theta}}$ and, at the same time, the boundary condition u = 0.

Our approach is a variational one, so that we define, for v and w in $H_0^1(\Omega)$, the functional

$$J(v,w) = \frac{1}{2} \int_{\Omega} A(x) \nabla v \nabla v + \frac{1}{2} \int_{\Omega} M(x) \nabla w \nabla w - \int_{\Omega} v_{+}^{\theta} w_{+}^{p}, \qquad (1.5)$$

Corresponding author.

Nonlinear

(1.3)

E-mail addresses: boccardo@mat.uniroma1.it (L. Boccardo), orsina@mat.uniroma1.it (L. Orsina).

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2011 Published by Elsevier Ltd doi:10.1016/j.na.2011.01.017