Nonexistence results for classes of 3×3 elliptic systems

R. Shivaji ${ }^{\text {a,* }}$, Jinglong Ye^{b}
${ }^{\text {a }}$ Department of Mathematics and Statistics, Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA
${ }^{\text {b }}$ Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA

ARTICLE INFO

Article history:

Received 15 March 2010
Accepted 8 October 2010

MSC:

34B18
35J25

Keywords:

Semipositone systems
Radial solutions
Nonexistence results

1. Introduction

Consider the system

$$
\begin{array}{lc}
-\Delta u=\lambda f(v, w) ; & x \in \Omega \\
-\Delta v=\mu g(u, w) ; & x \in \Omega \\
-\Delta w=\sigma h(u, v) ; & x \in \Omega \\
u=v=w=0 ; \quad x \in \partial \Omega,
\end{array}
$$

ABSTRACT

We consider the system

$$
\begin{array}{ll}
-\Delta u=\lambda f(v, w) ; & x \in \Omega \\
-\Delta v=\mu g(u, w) ; & x \in \Omega \\
-\Delta w=\sigma h(u, v) ; & x \in \Omega \\
u=v=w=0 ; & x \in \partial \Omega,
\end{array}
$$

where Ω is a ball in $R^{N}, N>1$ and $\partial \Omega$ is its boundary, λ, μ, σ are positive parameters bounded away from zero, and f, g, h are smooth functions that are negative at the origin (semipositone system) and satisfy certain linear growth conditions at infinity. We establish nonexistence of positive solutions when two of the parameters λ, μ, σ are large. Our proofs depend on energy analysis and comparison methods.
© 2010 Elsevier Ltd. All rights reserved.
where Ω is a ball in $R^{N}, \partial \Omega$ is its boundary, $\lambda, \mu, \sigma \geq \epsilon_{0}$, where $\epsilon_{0}>0$, and f, g, h satisfy:
(H1) $f, g, h:[0, \infty) \times[0, \infty) \rightarrow R$ are C^{1} functions such that $f(0,0)<0, g(0,0)<0, h(0,0)<0$, and $f_{v}>0, f_{w}>$ $0, g_{u}>0, g_{w}>0, h_{u}>0, h_{v}>0$ for all $u>0, v>0, w>0$.
(H2) There exist positive constants K_{i} and $M_{i}, i=1,2,3$ such that $f(v, w) \geq K_{1} v-M_{1}, g(u, w) \geq K_{2} w-M_{2}$ and $h(u, v) \geq K_{3} u-M_{3}$ for all $u>0, v>0, w>0$.
(H3) There exist positive numbers $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$ such that $f\left(\beta_{1}, 0\right)=f\left(0, \gamma_{1}\right)=g\left(\alpha_{1}, 0\right)=g\left(0, \gamma_{2}\right)=h\left(\alpha_{2}, 0\right)=$ $h\left(0, \beta_{2}\right)=0$.
Then we establish:
Theorem 1.1. Let (H1), (H2) and (H3) hold. Then the system (1.1) has no positive solution if two of the parameters λ, μ, σ are large.

[^0]0362-546X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2010.10.021

[^0]: * Corresponding author. Tel.: +1 662325 7142; fax: +1 6623250005.

 E-mail addresses: shivaji@ra.msstate.edu (R. Shivaji), jy79@msstate.edu (J. Ye).

