Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Nonexistence results for classes of 3×3 elliptic systems

R. Shivaji^{a,*}, Jinglong Ye^b

^a Department of Mathematics and Statistics, Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA ^b Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA

ARTICLE INFO

Article history: Received 15 March 2010 Accepted 8 October 2010

MSC: 34B18 35]25

Keywords: Semipositone systems Radial solutions Nonexistence results

ABSTRACT

We consider the system	
$-\Delta u = \lambda f(v, w);$	$x \in \Omega$
$-\Delta v = \mu g(u, w);$	$x \in \Omega$
$-\Delta w = \sigma h(u, v);$	$x \in \Omega$
u=v=w=0;	$x \in \partial \Omega$,

where Ω is a ball in \mathbb{R}^N , N > 1 and $\partial \Omega$ is its boundary, λ , μ , σ are positive parameters bounded away from zero, and f, g, h are smooth functions that are negative at the origin (semipositone system) and satisfy certain linear growth conditions at infinity. We establish nonexistence of positive solutions when two of the parameters λ , μ , σ are large. Our proofs depend on energy analysis and comparison methods.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the system

$-\Delta u = \lambda f(v, w); x \in \Omega$	
$-\Delta v = \mu g(u, w); x \in \Omega$	
$-\Delta w = \sigma h(u, v); x \in \Omega$	(1.1)
$u=v=w=0; x\in\partial\Omega,$	

where Ω is a ball in \mathbb{R}^N , $\partial \Omega$ is its boundary, $\lambda, \mu, \sigma \geq \epsilon_0$, where $\epsilon_0 > 0$, and f, g, h satisfy:

- (H1) $f, g, h : [0, \infty) \times [0, \infty) \rightarrow R$ are C^1 functions such that f(0, 0) < 0, g(0, 0) < 0, h(0, 0) < 0, and $f_v > 0, f_w > 0, g_u > 0, g_w > 0, h_u > 0, h_v > 0$ for all u > 0, v > 0, w > 0.
- (H2) There exist positive constants K_i and M_i , i = 1, 2, 3 such that $f(v, w) \ge K_1 v M_1, g(u, w) \ge K_2 w M_2$ and $h(u, v) \ge K_3 u M_3$ for all u > 0, v > 0, w > 0.
- (H3) There exist positive numbers $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2$ such that $f(\beta_1, 0) = f(0, \gamma_1) = g(\alpha_1, 0) = g(0, \gamma_2) = h(\alpha_2, 0) = h(0, \beta_2) = 0.$

Then we establish:

Theorem 1.1. Let (H1), (H2) and (H3) hold. Then the system (1.1) has no positive solution if two of the parameters λ , μ , σ are large.

* Corresponding author. Tel.: +1 662 325 7142; fax: +1 662 325 0005. E-mail addresses: shivaji@ra.msstate.edu (R. Shivaji), jy79@msstate.edu (J. Ye).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.10.021