Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

An existence result for a class of *p*-Laplacian elliptic systems involving homogeneous nonlinearities in R^{N*}

Shengzhong Duan^{a,*}, Xian Wu^b

^a Department of Mathematics, Baoshan College, Baoshan, Yunnan 678000, PR China ^b Department of Mathematics, Yunnan Normal University, Kunming, Yunnan 650092, PR China

ARTICLE INFO

Article history: Received 23 December 2010 Accepted 19 April 2011 Communicated by S. Ahmad

Keywords: Elliptic system Nehari manifold Lack of compactness Variational methods

ABSTRACT

In the present paper, we study the existence of nontrivial solutions for a class of *p*-Laplacian elliptic systems in \mathbb{R}^N . A new existence result for nontrivial solutions is obtained by means of variational methods.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and main result

Consider the following *p*-Laplacian system:

$$\begin{cases} -\Delta_p u + |u|^{p-2} u = \frac{1}{\mu} \frac{\partial F(u, v)}{\partial u} + f, & \text{in } \mathbb{R}^N, \\ -\Delta_p v + |v|^{p-2} v = \frac{1}{\mu} \frac{\partial F(u, v)}{\partial v} + g, & \text{in } \mathbb{R}^N, \\ u, v \in W^{1,p}(\mathbb{R}^N), \end{cases}$$
(1.1)

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ denotes the *p*-Laplacian operator, $N \ge 3$, $1 , <math>p < \mu < p^* = \frac{pN}{N-p}$, and $W^{1,p}(R^N)$ is the Sobolev space with the norm $||u||_{1,p} = (\int_{R^N} (|\nabla u|^p + |u|^p) dx)^{\frac{1}{p}}$. $F \in C^1(R \times R, R^+)$ is positively homogeneous of degree μ , that is, $F(tu, tv) = t^{\mu}F(u, v)$ for all $(u, v) \in R \times R$ and t > 0, $R^+ = [0, +\infty)$, $f, g \in W^{-1,p'}(R^N) \setminus \{0\}$, where p' is the conjugate to p and $W^{-1,p'}(R^N)$ is the space dual to $W^{1,p}(R^N)$. Problem (1.1) is posed in the framework of the Sobolev space $E = W^{1,p}(R^N) \times W^{1,p}(R^N)$ with the standard norm

$$\|(u,v)\|_{E} = \left(\int_{\mathbb{R}^{N}} (|\nabla u|^{p} + |u|^{p}) dx + \int_{\mathbb{R}^{N}} (|\nabla v|^{p} + |v|^{p}) dx\right)^{\frac{1}{p}}.$$

^k Corresponding author. Tel.: +86 875 3115816; fax: +86 875 3115816.

^{*} This work was supported partly by the National Natural Science Foundation of China (10961028) and the Foundation of Education Commission of Yunnan Province, China (2010Y051).

E-mail addresses: duanshengzhong@163.com (S. Duan), wuxian2001@yahoo.com.cn (X. Wu).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.04.039