

Contents lists available at ScienceDirect

Nonlinear Analysis

Bifurcation of sign-changing solutions for one-dimensional p-Laplacian with a strong singular weight: p-superlinear at ∞

Ryuji Kajikiya ^a, Yong-Hoon Lee ^{b,*}, Inbo Sim ^c

- ^a Department of Mathematics, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan
- ^b Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea
- ^c Department of Mathematics, University of Ulsan, Ulsan 680-749, Republic of Korea

ARTICLE INFO

Article history: Received 29 September 2010 Accepted 29 March 2011 Communicated by Ravi Agarwal

MSC:

34B09 34B16

34C23

Keywords: p-Laplace equation Singular weight Leray-Schauder degree Bifurcation Positive solutions Sign-changing solutions

ABSTRACT

We investigate Dirichlet boundary value problems of one-dimensional p-Laplace equations with a singular weight which may not be in L^1 . Using the properties of eigenfunctions and the global bifurcation theory and considering the case, p-superlinear at ∞ , we obtain the similar results as seen in [1] of the case, p-sublinear at ∞ . Moreover, we obtain the existence of sign-changing solutions when the nonlinear term is asymptotically p-sublinear near 0 and p-superlinear at ∞ .

© 2011 Elsevier Ltd. All rights reserved.

1. Main results

In this paper, we investigate the following one-dimensional p-Laplacian problem with a weight function

$$\begin{cases} \varphi_p(u'(t))' + \lambda h(t) f(u(t)) = 0, & \text{a.e. in } (0, 1), \\ u(0) = u(1) = 0, \end{cases}$$
 a.e. in $(0, 1)$,

where $\varphi_p(s) = |s|^{p-2}s$, p > 1, λ is a nonnegative parameter, h is a nonnegative measurable function on (0, 1), $h \not\equiv 0$ on any open subinterval in (0, 1) which may be singular at t = 0 and/or t = 1 and $f \in C(\mathbb{R}, \mathbb{R})$. For the motivation and history, one may refer to [1] and references therein.

In [1], under the assumptions

(F1)
$$sf(s) > 0$$
 for $s \neq 0$,

(F2)
$$0 < f_0 \equiv \lim_{s \to 0^+} f(s)/s^{p-1} < \infty$$
,

(F3)
$$f_{\infty} = \lim_{s \to \infty} f(s)/s^{p-1} = 0$$

^{*} Corresponding author. Tel.: +82 515102295; fax: +82 51 581 1458. E-mail address: yhlee@pusan.ac.kr (Y.-H. Lee).