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a b s t r a c t

This paper consider the multiple solutions for even Hamiltonian systems satisfying
Sturm–Liouville boundary conditions. The gradient of Hamiltonian function is generalized
asymptotically linear. The solutions obtained are shown to coincide with the critical points
of a dual functional. Thanks to the index theory for linear Hamiltonian systems by Dong
(2010) [1], we find critical points of this dual functional by verifying the assumptions of a
lemma about multiple critical points given by Chang (1993) [2].
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1. Introduction and main results

In [1], the author established an index theory for the following Hamiltonian systemwith Sturm–Liouville boundary value
conditions

ẋ = JB(t)x, (1.1)
x1(0) cosα + x2(0) sinα = 0, (1.2)
x1(1) cosβ + x2(1) sinβ = 0, (1.3)

where B ∈ L∞((0, 1);GLs(R2n)), 0 ≤ α ≤ π and 0 < β ≤ π, x = (x1, x2) ∈ Rn
× Rn. That is, for any

B ∈ L∞((0, 1);GLs(R2n)), he associated itwith a pair of numbers (iα,β(B), να,β(B)), which are called the index and nullity of B
respectively. Precisely, he defined νA(B) as the dimension of solution subspace of (1.1)–(1.3), iα,β(B) = iα,β(B0)+ Iα,β(B0, B),
where the initial index iα,β(B0) is a prescribed integer associated with B0, Iα,β(B1, B2) =

∑
λ∈[0,1) να,β((1 − λ)B1 + λB2)

when B1, B2 ∈ Ls(X), B1 < B2. We will introduce the definitions and properties of iα,β(B) and να,β(B) in detail in Section 2.
In this paper we investigate the following problems (1.2), (1.3) and

ẋ = JH ′(t, x), (1.4)
where H ′ denotes the gradient of H with respect to x. The main result is the following theorem:

Theorem 1.1. Assume that H,H ′,H ′′ are all continuous, that H(t, 0) ≡ 0, and that the following conditions are satisfied:
(i) H ′(t, x) = B0(t, x)x + o(|x|) with |x| → 0, where B0(t, x) is a symmetric 2n × 2n matrix varying continuously with
(t, x) ∈ [0, 1]×R2n and satisfying A1(t) ≤ B0(t, x) ≤ A2(t), for all (t, x), where A1 and A2 are such that iα,β(A1) = iα,β(A2)
and να,β(A2) = 0.
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