Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Optimization problems on general classes of rearrangements

F. Cuccu^a, G. Porru^{a,*}, S. Sakaguchi^b

^a Dipartimento di Matematica e Informatica, University of Cagliari, Italy

^b Department of Applied Mathematics, Graduate School of Engineering, Hiroshima University, 739-8527, Japan

ARTICLE INFO

Article history: Received 2 August 2010 Accepted 18 May 2011 Communicated by Enzo Mitidieri

MSC: 35J20 35J60 49K20

Keywords: p-Laplacian Rearrangements Energy integral Optimization problems Uniqueness

1. Introduction

Let Ω be a bounded smooth domain in \mathbb{R}^N . If $E \subset \mathbb{R}^N$ is a measurable set, we denote by |E| its Lebesgue measure. We say that two measurable functions f(x) and g(x) defined in Ω have the same rearrangement if

$$|\{x \in \Omega : f(x) \ge \beta\}| = |\{x \in \Omega : g(x) \ge \beta\}| \quad \forall \beta \in \mathbb{R}.$$

If $g_0(x)$ is a bounded function defined in Ω , we denote by $\mathfrak{g} = \mathfrak{g}(\underline{g}_0)$ the class of its rearrangements. We assume $g_0(x) > 0$ in a subset of positive measure, and suppose $g_0 \neq \text{constant}$. Let $\overline{\mathfrak{g}}$ be the closure of \mathfrak{g} in the weak* topology of $L^{\infty}(\Omega)$. For $1 , we set <math>W = H_0^{1,p}(\Omega)$. For $1 \leq q < p$, $g \in \overline{\mathfrak{g}}$ and $w \in W$, we define

$$B(g,w) = \frac{q}{p-q} \int_{\Omega} \left(\frac{p}{q} g |w|^q - |\nabla w|^p \right) \mathrm{d}x.$$
(1)

Note that, when $g_0(x)$ is sign changing, we may have $g \in \overline{g}$ with $g(x) \le 0$ in Ω . If $g(x) \le 0$ in Ω , then $B(g, w) \le 0$ for any $w \in W$. If g(x) > 0 in a subset of positive measure, we define

$$W_g^+ = \left\{ w \in W : \int_{\Omega} g |w|^q \mathrm{d}x > 0 \right\}.$$

* Corresponding author. Fax: +39 70 6578511.

ABSTRACT

This paper is concerned with maximization and minimization problems of the energy integral associated to *p*-Laplace equations depending on functions that belong to a class of rearrangements. We prove existence and uniqueness results, and present some features of optimal solutions. The radial case is discussed in detail. We also prove a result of uniqueness for a class of *p*-Laplace equations under non-standard assumptions.

© 2011 Elsevier Ltd. All rights reserved.

E-mail addresses: fcuccu@unica.it (F. Cuccu), porru@unica.it, porru@vaxca1.unica.it (G. Porru), sakaguch@amath.hiroshima-u.ac.jp (S. Sakaguchi).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.05.039