Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

A positive solution branch for nonlinear eigenvalue problems in \mathbb{R}^N

T.V. Anoop^{a,b,*}, Jagmohan Tyagi^a

^a TIFR Center for Applicable Mathematics, Yelahanka, Bangalore 560065, India ^b The Institute of Mathematical Sciences, Chennai 600113, India

ARTICLE INFO

Article history: Received 8 March 2010 Accepted 10 November 2010

Keywords: Implicit function theorem Positive solution Elliptic regularity Strong minimum principle

ABSTRACT

In this note, we give sufficient conditions for the existence of a positive solution branch for the problem

$$-\Delta u = \lambda a(x)f(u) \quad \text{in } \mathbb{R}^{N}$$

$$u(x) \to 0$$
 as $|x| \to \infty$,

with sign changing weight *a*, where $N \ge 3$ and *f* is a smooth nonlinearity with $f(0) \ne 0$. © 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in mathematical physics, for example, wave phenomena, nonlinear field theory, combustion theory, fluid dynamics etc., lead to a nonlinear eigenvalue problem of the type

 $-\Delta u = \lambda f(u) \quad \text{in } \Omega \subset \mathbb{R}^N$ $u(x) = 0 \quad \text{on } \partial \Omega,$

where the existence of a positive solution is of great importance. Recently, many researchers have been interested in studying the following problems in $\Omega \subseteq \mathbb{R}^N$ with weight *a*:

$$-\Delta u = \lambda a(x) f(u) \quad \text{in } \Omega,$$

$$u(x) = 0 \quad \text{on } \partial \Omega,$$
 (1.1)

due to the appearance of these kinds of problems in population genetics.

For the case f(0) = 0, there are some works dealing with the existence of bounded positive C^2 solutions to (1.1) in \mathbb{R}^N for λ sufficiently large, when f(1) = 0, f is smooth and f(s) > 0, $s \in (0, 1)$. For example in [1] Tertikas proved the existence result when a is locally Hölder continuous and negative at infinity. For $N \ge 3$, Brown and Stavrakakis [2] proved the same result for when a is smooth and lies in $L^{\frac{N}{2}}$. The decay of solutions are obtained under additional assumptions on the weight a. Gámez [3] established the existence of solutions, in $\mathcal{D}_0^{1,2}(\mathbb{R}^N) :=$ the completion of $C_c^{\infty}(\mathbb{R}^N)$ with respect the norm $\left(\int_{\mathbb{R}^N} |\nabla u|^2\right)^{\frac{1}{2}}$, to (1.1) when a is continuous and the positive part $a^+ \in L^{\frac{2N}{N+2}}$ and he relaxed the smoothness of f to Lipschitz continuity and differentiability at 0. He proved the decay under the additional assumption that a is bounded.

For the case f(0) > 0, some existence results are available when Ω is bounded and λ is sufficiently small. In [4], the authors established the existence of a nonnegative radial solution to (1.1) in B_1 , for sign changing a, when f is positive and

^k Corresponding author at: TIFR Center for Applicable Mathematics, Yelahanka, Bangalore 560065, India. Tel.: +91 009742395175.

E-mail addresses: tvanoop@math.tifrbng.res.in, tvanoop@imsc.res.in (T.V. Anoop), tyagi@math.tifrbng.res.in, jtyagi1@gmail.com (J. Tyagi).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.11.023