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a b s t r a c t

In this paper, we study the homogeneous Einstein–Randersmetrics on spheres. It turns out
that we can find out all the homogeneous non-Riemannian Einstein–Randers metrics on
spheres. Furthermore,we obtain a complete classification of suchmetrics under isometries.
Using this, we present a large number of homogeneous Einstein–Randers metrics of non-
constant flag curvature.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is our goal in this article to describe the homogeneous Einstein–Randers metrics on spheres and give the complete
classification of them under isometries. Randers metrics were introduced by G. Randers in the context of general relativity,
and later named by Ingarden. They are built from

• a Riemannian metric a := aijdxi ⊗ dxj, and
• a 1-form b := bidxi, with equivalent description b♯

:= bi∂xi , both living globally on the smooth n-dimensional manifold
M . The Finsler function of a Randers metric has the form F = α + β , where

α(x, y) :=


aij(x)yiyj, β(x, y) := bi(x)yi. (1.1)

The Finsler function of a Randers metric satisfies F(x, y) = F(x, −y) if and only if it is Riemannian.
Let (M, F) be a connected Finsler space, x ∈ M , y ∈ Tx(M) \ {0}. The Ricci scalar Ric(x, y) is defined to be the sum of

those n − 1 flag curvatures K(x, y, ev), where {ev : 1 ≤ v ≤ n − 1} is any collection of n − 1 orthonormal transverse edges
perpendicular to the flagpole, i.e.,

Ric(x, y) :=

n−1−
v=1

Rvv. (1.2)
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