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a b s t r a c t

In this paper, we study the Schrödinger–Poisson system
−1u + V (x)u + λφ(x)u = K(x)f (u), in R3,

−1φ = u2, u > 0, in R3,
(SP)

and prove the existence of positive solutions for system (SP) when the nonlinearity f has
growth at most linear for λ small, allowing the potential V (x) to vanish at infinity. In
addition, also we obtain the nonexistence of a nontrivial positive solution for λ ≥

1
4 .

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following nonlinear system:
−1u + V (x)u + λφ(x)u = K(x)f (u), in R3,

−1φ = u2, u > 0, in R3,
(SP)

where λ > 0 is a parameter, and V , K : RN
→ R+ are radial and smooth. Such a system, also known as the nonlinear

Schrödinger–Maxwell system, arises in an interesting physical context. Indeed, according to a classicalmodel, the interaction
of a charged particle with an electromagnetic field can be described by coupling the nonlinear Schrödinger and the Poisson
equations (we refer the reader to [1] formore details on the physical aspects). In particular, if we are looking for electrostatic-
type solutions, we just have to solve (SP). To be precise, we will find solutions for (SP)with the following properties:

u ∈ H1(R3), u > 0, lim
|x|→∞

u(x) = 0. (1.1)

Variational methods and critical point theory are powerful tools in studying nonlinear differential equations [2–4], and
in particular Hamiltonian systems and elliptic equations [5–10]. In recent years, system (SP) has been studied widely via
modern variationalmethods under the various hypotheses; see [11–18] and the references therein.More precisely, Ruiz [14]
obtained the existence and nonexistence of radial solutions for (SP) with V = K = 1. Soon after, Ambrosetti and Ruiz [11]
obtained multiplicity results for (SP)with V = K = 1.
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